核函数支持向量机(Kernel SVM)

核函数支持向量机(Kernel SVM)是一种非常强大的分类器,能够在非线性数据集上实现良好的分类效果。以下是关于核函数支持向量机的详细数学模型理论知识推导、实施步骤与参数解读,以及两个多维数据实例(一个未优化模型,一个优化后的模型)的完整分析。

一、数学模型理论推导

1.1 线性支持向量机

支持向量机的目标是找到一个超平面,以最大化两类数据点之间的间隔。对于线性可分的数据,支持向量机的目标可以用以下优化问题来表示:

1.2 非线性支持向量机

二、实施步骤与参数解读

2.1 选择核函数

常用的核函数有:

2.2 参数选择

  • C:控制分类错误与间隔的权衡。值越大,分类错误越少,但间隔越小,容易过拟合。
  • :控制RBF核的宽度。值越大,高斯分布越窄,模型复杂度越高,容易过拟合。

三、多维数据实例

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from sklearn.svm import SVC
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report

# 生成数据
X, y = make_classification(n_samples=300, n_features=2, n_informative=2, n_redundant=0, n_clusters_per_class=1, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 未优化的核函数SVM模型
model = SVC(kernel='rbf', C=1.0, gamma='scale')
model.fit(X_train, y_train)

# 预测与结果分析
y_pred = model.predict(X_test)
print("未优化模型分类报告:")
print(classification_report(y_test, y_pred))

# 可视化结果
plt.figure(figsize=(10, 6))
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap='coolwarm', s=30, edgecolors='k')
plt.title("未优化的核函数SVM分类结果", fontname='KaiTi')
plt.show()
# 优化后的核函数SVM模型
model_optimized = SVC(kernel='rbf', C=10.0, gamma=0.1)
model_optimized.fit(X_train, y_train)

# 预测与结果分析
y_pred_optimized = model_optimized.predict(X_test)
print("优化后模型分类报告:")
print(classification_report(y_test, y_pred_optimized))

# 可视化结果
plt.figure(figsize=(10, 6))
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap='coolwarm', s=30, edgecolors='k')
plt.title("优化后的核函数SVM分类结果", fontname='KaiTi')
plt.show()

四、结果与结果解释

4.1 未优化模型

  • 分类报告显示了精度、召回率和F1分数等指标。
  • 可视化图展示了未优化模型的分类边界和测试集数据点。

4.2 优化后的模型

  • 优化后模型的分类报告通常会显示更高的精度、召回率和F1分数,表明模型性能提升。
  • 优化后的可视化图展示了改进后的分类边界,更好地分隔了数据点。
相关推荐
叫我:松哥1 天前
基于机器学习的智能健身风险分析系统,整合数据可视化与人工智能算法
人工智能·后端·python·算法·机器学习·信息可视化·scikit-learn
小龙报1 天前
【算法通关指南:算法基础篇 】模拟算法专题:1. 铺地毯 2. 回文日期 3. 扫雷
c语言·数据结构·c++·算法·动态规划·知识图谱·visual studio
wen__xvn1 天前
代码随想录算法训练营DAY6第三章 哈希表part01
数据结构·算法·散列表
漫随流水1 天前
leetcode算法(239.滑动窗口最大值)
数据结构·算法·leetcode
sprintzer1 天前
12.26-1.5力扣字符串刷题
算法·leetcode·职场和发展
黛色正浓1 天前
leetCode-热题100-双指针合集(JavaScript)
javascript·算法·leetcode
Croa-vo1 天前
TikTok 系统设计 VO 面经:实时热门视频检测系统深度复盘(附求职助攻指南)
java·算法·leetcode·面试·职场和发展
八月的雨季 最後的冰吻1 天前
FFmepg-- 41-ffplay源码- -快进快退seek
c++·算法·音视频
Swift社区1 天前
LeetCode 466 统计重复个数
算法·leetcode·职场和发展
橘颂TA1 天前
【剑斩OFFER】算法的暴力美学——字母异位词分组
数据结构·算法·leetcode·力扣·哈希算法·散列表·结构与算法