核函数支持向量机(Kernel SVM)

核函数支持向量机(Kernel SVM)是一种非常强大的分类器,能够在非线性数据集上实现良好的分类效果。以下是关于核函数支持向量机的详细数学模型理论知识推导、实施步骤与参数解读,以及两个多维数据实例(一个未优化模型,一个优化后的模型)的完整分析。

一、数学模型理论推导

1.1 线性支持向量机

支持向量机的目标是找到一个超平面,以最大化两类数据点之间的间隔。对于线性可分的数据,支持向量机的目标可以用以下优化问题来表示:

1.2 非线性支持向量机

二、实施步骤与参数解读

2.1 选择核函数

常用的核函数有:

2.2 参数选择

  • C:控制分类错误与间隔的权衡。值越大,分类错误越少,但间隔越小,容易过拟合。
  • :控制RBF核的宽度。值越大,高斯分布越窄,模型复杂度越高,容易过拟合。

三、多维数据实例

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from sklearn.svm import SVC
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report

# 生成数据
X, y = make_classification(n_samples=300, n_features=2, n_informative=2, n_redundant=0, n_clusters_per_class=1, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 未优化的核函数SVM模型
model = SVC(kernel='rbf', C=1.0, gamma='scale')
model.fit(X_train, y_train)

# 预测与结果分析
y_pred = model.predict(X_test)
print("未优化模型分类报告:")
print(classification_report(y_test, y_pred))

# 可视化结果
plt.figure(figsize=(10, 6))
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap='coolwarm', s=30, edgecolors='k')
plt.title("未优化的核函数SVM分类结果", fontname='KaiTi')
plt.show()
# 优化后的核函数SVM模型
model_optimized = SVC(kernel='rbf', C=10.0, gamma=0.1)
model_optimized.fit(X_train, y_train)

# 预测与结果分析
y_pred_optimized = model_optimized.predict(X_test)
print("优化后模型分类报告:")
print(classification_report(y_test, y_pred_optimized))

# 可视化结果
plt.figure(figsize=(10, 6))
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap='coolwarm', s=30, edgecolors='k')
plt.title("优化后的核函数SVM分类结果", fontname='KaiTi')
plt.show()

四、结果与结果解释

4.1 未优化模型

  • 分类报告显示了精度、召回率和F1分数等指标。
  • 可视化图展示了未优化模型的分类边界和测试集数据点。

4.2 优化后的模型

  • 优化后模型的分类报告通常会显示更高的精度、召回率和F1分数,表明模型性能提升。
  • 优化后的可视化图展示了改进后的分类边界,更好地分隔了数据点。
相关推荐
ytttr87338 分钟前
matlab实现多标签K近邻(ML-KNN)算法
算法·机器学习·matlab
一招定胜负1 小时前
逻辑回归调优三板斧:参数调整、阈值设定、数据集平衡
算法·机器学习·逻辑回归
豆约翰1 小时前
Z字形扫描ccf
java·开发语言·算法
Salt_07281 小时前
DAY 35 文件的规范拆分和写法
python·算法·机器学习
风筝在晴天搁浅1 小时前
代码随想录 109.冗余连接Ⅱ
算法
业精于勤的牙1 小时前
浅谈:算法中的斐波那契数(三)
算法·职场和发展
ss2731 小时前
阻塞队列:三组核心方法全对比
java·数据结构·算法
小O的算法实验室1 小时前
2026年SEVC SCI2区,面向空地跨域无人集群的目标引导自适应路径规划方法,深度解析+性能实测
算法·论文复现·智能算法·智能算法改进
Xの哲學1 小时前
Linux MAC层实现机制深度剖析
linux·服务器·算法·架构·边缘计算
埃伊蟹黄面1 小时前
算法 --- hash
数据结构·c++·算法·leetcode