Inconsistent Query Results Based on Output Fields Selection in Milvus Dashboard

**题意:**在Milvus仪表盘中基于输出字段选择的不一致查询结果

问题背景:

I'm experiencing an issue with the Milvus dashboard where the search results change based on the selected output fields.

I'm working on a RAG project using text data converted into embeddings, stored in a Milvus collection with around 8000 elements. Last week, my retrieval results matched my expectations ("good" results), however, this week, the results have degraded ("bad" results).

I found that when I exclude the embeddings_vector field from the output fields in the Milvus dashboard, I get the "good" results; Including the embeddings_vector field in the output changes the results to "bad".

I've attached two screenshots showing the difference in the results based on the selected output fields.

Any ideas on what's causing this or how to fix it?

Environment:

Python 3.11 pymilvus 2.3.2 llama_index 0.8.64

Thanks in advance!

python 复制代码
from llama_index.vector_stores import MilvusVectorStore
from llama_index import ServiceContext, VectorStoreIndex

# Some other lines..

# Setup for MilvusVectorStore and query execution
vector_store = MilvusVectorStore(uri=MILVUS_URI,
                                 token=MILVUS_API_KEY,
                                 collection_name=collection_name,
                                 embedding_field='embeddings_vector',
                                 doc_id_field='chunk_id',
                                 similarity_metric='IP',
                                 text_key='chunk_text')

embed_model = get_embeddings()
service_context = ServiceContext.from_defaults(embed_model=embed_model, llm=llm)
index = VectorStoreIndex.from_vector_store(vector_store=vector_store, service_context=service_context)
query_engine = index.as_query_engine(similarity_top_k=5, streaming=True)

rag_result = query_engine.query(prompt)

Here is the "good" result: "good" result And here is the "bad" result: "bad" result

问题解决:

I would like to suggest you to follow below considerations.

  • Ensure that your Milvus collection is correctly indexed. Indexing plays a crucial role in how search results are retrieved and ordered. If the index configuration has changed or is not optimized, it might affect the retrieval quality.
  • In your screenshots, the consistency level is set to "Bounded". Try experimenting with different consistency levels (e.g., "Strong" or "Eventually") to see if it impacts the results. Consistency settings can influence the real-time availability of the indexed data.
  • Review the query parameters, especially the similarity_metric. Since you're using IP (Inner Product) as the similarity metric, ensure that your embedding vectors are normalized correctly. Inner Product search works best with normalized vectors.
  • Verify that the embedding vectors are of consistent quality and scale. If there were changes in the embedding model or preprocessing steps, it could lead to variations in the search results.
  • The inclusion of the embeddings_vector field in the output might affect the way Milvus scores and ranks the results. It's possible that returning the raw embeddings affects the internal ranking logic. Ensure that including this field does not inadvertently alter the search behavior.
  • Check the Milvus server logs and performance metrics to identify any anomalies or changes in the search behavior. This might provide insights into why the results differ when the embeddings_vector field is included.
  • Ensure that there are no version mismatches between the client (pymilvus) and the Milvus server. Sometimes, discrepancies between versions can cause unexpected behavior.
  • As a last resort, try modifying your code to exclude the embeddings_vector field programmatically during retrieval and compare the results. This can help isolate whether the issue is indeed caused by including the embeddings in the output.
  • Please try out this code if it helps.
相关推荐
GMICLOUD1 小时前
GMI Cloud@AI 周报 | DeepSeek V3.2 系列震撼开源;Claude Opus 4.5 发布
人工智能·ai·ai资讯
AI指北1 小时前
每周AI看 | 亚马逊推出AI产品矩阵、网易云商客服Agent项目收录至《2025年中国数字服务产业发展白皮书》
人工智能·ai·ai agent·ai热点
CoderJia程序员甲1 小时前
GitHub 热榜项目 - 日榜(2025-12-5)
ai·开源·大模型·github·ai教程
smileNicky2 小时前
魔珐星云SDK实战测评:从0到1搭建会“思考+互动”的智能数字人客服应用
ai
阿杰学AI2 小时前
AI核心知识35——大语言模型之Generative AI(简洁且通俗易懂版)
人工智能·ai·语言模型·chatgpt·aigc·生成式ai·generative ai
阿杰学AI2 小时前
AI核心知识36——大语言模型之AGI(简洁且通俗易懂版)
人工智能·ai·语言模型·aigc·agi
组合缺一3 小时前
Solon AI 开发学习16 - generate - 生成模型(图、音、视)
java·人工智能·学习·ai·llm·solon
我很哇塞耶4 小时前
AAAI 2026 | 跨视频推理基准 CrossVid:给多模态大模型出一道“综合题”
人工智能·ai·大模型·多模态大模型
鼎道开发者联盟4 小时前
当界面会思考:AIGUI八要素驱动DingOS实现“感知-生成-进化“闭环
前端·人工智能·ai·gui
带刺的坐椅5 小时前
Solon AI 开发学习16 - generate - 生成模型(图、音、视)
java·ai·llm·openai·solon