Inconsistent Query Results Based on Output Fields Selection in Milvus Dashboard

**题意:**在Milvus仪表盘中基于输出字段选择的不一致查询结果

问题背景:

I'm experiencing an issue with the Milvus dashboard where the search results change based on the selected output fields.

I'm working on a RAG project using text data converted into embeddings, stored in a Milvus collection with around 8000 elements. Last week, my retrieval results matched my expectations ("good" results), however, this week, the results have degraded ("bad" results).

I found that when I exclude the embeddings_vector field from the output fields in the Milvus dashboard, I get the "good" results; Including the embeddings_vector field in the output changes the results to "bad".

I've attached two screenshots showing the difference in the results based on the selected output fields.

Any ideas on what's causing this or how to fix it?

Environment:

Python 3.11 pymilvus 2.3.2 llama_index 0.8.64

Thanks in advance!

python 复制代码
from llama_index.vector_stores import MilvusVectorStore
from llama_index import ServiceContext, VectorStoreIndex

# Some other lines..

# Setup for MilvusVectorStore and query execution
vector_store = MilvusVectorStore(uri=MILVUS_URI,
                                 token=MILVUS_API_KEY,
                                 collection_name=collection_name,
                                 embedding_field='embeddings_vector',
                                 doc_id_field='chunk_id',
                                 similarity_metric='IP',
                                 text_key='chunk_text')

embed_model = get_embeddings()
service_context = ServiceContext.from_defaults(embed_model=embed_model, llm=llm)
index = VectorStoreIndex.from_vector_store(vector_store=vector_store, service_context=service_context)
query_engine = index.as_query_engine(similarity_top_k=5, streaming=True)

rag_result = query_engine.query(prompt)

Here is the "good" result: "good" result And here is the "bad" result: "bad" result

问题解决:

I would like to suggest you to follow below considerations.

  • Ensure that your Milvus collection is correctly indexed. Indexing plays a crucial role in how search results are retrieved and ordered. If the index configuration has changed or is not optimized, it might affect the retrieval quality.
  • In your screenshots, the consistency level is set to "Bounded". Try experimenting with different consistency levels (e.g., "Strong" or "Eventually") to see if it impacts the results. Consistency settings can influence the real-time availability of the indexed data.
  • Review the query parameters, especially the similarity_metric. Since you're using IP (Inner Product) as the similarity metric, ensure that your embedding vectors are normalized correctly. Inner Product search works best with normalized vectors.
  • Verify that the embedding vectors are of consistent quality and scale. If there were changes in the embedding model or preprocessing steps, it could lead to variations in the search results.
  • The inclusion of the embeddings_vector field in the output might affect the way Milvus scores and ranks the results. It's possible that returning the raw embeddings affects the internal ranking logic. Ensure that including this field does not inadvertently alter the search behavior.
  • Check the Milvus server logs and performance metrics to identify any anomalies or changes in the search behavior. This might provide insights into why the results differ when the embeddings_vector field is included.
  • Ensure that there are no version mismatches between the client (pymilvus) and the Milvus server. Sometimes, discrepancies between versions can cause unexpected behavior.
  • As a last resort, try modifying your code to exclude the embeddings_vector field programmatically during retrieval and compare the results. This can help isolate whether the issue is indeed caused by including the embeddings in the output.
  • Please try out this code if it helps.
相关推荐
onlyellow5 小时前
【RAGFlow】ubuntu22部署ragflow(v0.17.2)
ai
Elastic 中国社区官方博客14 小时前
Elasticsearch:理解政府中的人工智能 - 应用、使用案例和实施
大数据·人工智能·elasticsearch·机器学习·搜索引擎·ai·全文检索
小白跃升坊16 小时前
如何优化和提高MaxKB回答的质量和准确性?
ai·大语言模型·max kb
wang_yb16 小时前
直线思维的进化:线性到广义线性
ai·databook
0泡1 天前
机器学习、深度学习和神经网络
深度学习·神经网络·机器学习·ai
AI是这个时代的魔法2 天前
CNNs for image processing and other applications
ai·machine learning·deep learning·computer vision
jamison_12 天前
文心一言与 DeepSeek 的竞争分析:技术先发优势为何未能转化为市场主导地位?
人工智能·ai·chatgpt·gpt-3·1024程序员节
chaodaibing2 天前
测试cursor-AI编辑器
ai·cursor
厌世小晨宇yu.2 天前
对Gpt关于泛型、Stream的提问
java·开发语言·gpt·ai
Tester_孙大壮2 天前
通过Appium理解MCP架构
人工智能·ai·语言模型