Inconsistent Query Results Based on Output Fields Selection in Milvus Dashboard

**题意:**在Milvus仪表盘中基于输出字段选择的不一致查询结果

问题背景:

I'm experiencing an issue with the Milvus dashboard where the search results change based on the selected output fields.

I'm working on a RAG project using text data converted into embeddings, stored in a Milvus collection with around 8000 elements. Last week, my retrieval results matched my expectations ("good" results), however, this week, the results have degraded ("bad" results).

I found that when I exclude the embeddings_vector field from the output fields in the Milvus dashboard, I get the "good" results; Including the embeddings_vector field in the output changes the results to "bad".

I've attached two screenshots showing the difference in the results based on the selected output fields.

Any ideas on what's causing this or how to fix it?

Environment:

Python 3.11 pymilvus 2.3.2 llama_index 0.8.64

Thanks in advance!

python 复制代码
from llama_index.vector_stores import MilvusVectorStore
from llama_index import ServiceContext, VectorStoreIndex

# Some other lines..

# Setup for MilvusVectorStore and query execution
vector_store = MilvusVectorStore(uri=MILVUS_URI,
                                 token=MILVUS_API_KEY,
                                 collection_name=collection_name,
                                 embedding_field='embeddings_vector',
                                 doc_id_field='chunk_id',
                                 similarity_metric='IP',
                                 text_key='chunk_text')

embed_model = get_embeddings()
service_context = ServiceContext.from_defaults(embed_model=embed_model, llm=llm)
index = VectorStoreIndex.from_vector_store(vector_store=vector_store, service_context=service_context)
query_engine = index.as_query_engine(similarity_top_k=5, streaming=True)

rag_result = query_engine.query(prompt)

Here is the "good" result: "good" result And here is the "bad" result: "bad" result

问题解决:

I would like to suggest you to follow below considerations.

  • Ensure that your Milvus collection is correctly indexed. Indexing plays a crucial role in how search results are retrieved and ordered. If the index configuration has changed or is not optimized, it might affect the retrieval quality.
  • In your screenshots, the consistency level is set to "Bounded". Try experimenting with different consistency levels (e.g., "Strong" or "Eventually") to see if it impacts the results. Consistency settings can influence the real-time availability of the indexed data.
  • Review the query parameters, especially the similarity_metric. Since you're using IP (Inner Product) as the similarity metric, ensure that your embedding vectors are normalized correctly. Inner Product search works best with normalized vectors.
  • Verify that the embedding vectors are of consistent quality and scale. If there were changes in the embedding model or preprocessing steps, it could lead to variations in the search results.
  • The inclusion of the embeddings_vector field in the output might affect the way Milvus scores and ranks the results. It's possible that returning the raw embeddings affects the internal ranking logic. Ensure that including this field does not inadvertently alter the search behavior.
  • Check the Milvus server logs and performance metrics to identify any anomalies or changes in the search behavior. This might provide insights into why the results differ when the embeddings_vector field is included.
  • Ensure that there are no version mismatches between the client (pymilvus) and the Milvus server. Sometimes, discrepancies between versions can cause unexpected behavior.
  • As a last resort, try modifying your code to exclude the embeddings_vector field programmatically during retrieval and compare the results. This can help isolate whether the issue is indeed caused by including the embeddings in the output.
  • Please try out this code if it helps.
相关推荐
Dontla3 小时前
ChatGPT键盘快捷键(按ctrl + /呼出)
ai
鱼满满记1 天前
1.6K+ Star!GenAIScript:一个可自动化的GenAI脚本环境
人工智能·ai·github
manfulshark1 天前
OPENAI官方prompt文档解析
ai·prompt
阿_旭1 天前
基于YOLO11/v10/v8/v5深度学习的维修工具检测识别系统设计与实现【python源码+Pyqt5界面+数据集+训练代码】
人工智能·python·深度学习·qt·ai
NETFARMER运营坛1 天前
如何优化 B2B 转化率?这些步骤你不可不知
大数据·安全·阿里云·ai·ai写作
AI原吾2 天前
探索 Python 图像处理的瑞士军刀:Pillow 库
图像处理·python·ai·pillow
探索云原生2 天前
GPU 环境搭建指南:如何在裸机、Docker、K8s 等环境中使用 GPU
ai·云原生·kubernetes·go·gpu
AI原吾2 天前
`psdparse`:解锁Photoshop PSD文件的Python密钥
python·ui·ai·photoshop·psdparse
HuggingAI2 天前
stable diffusion 大模型
人工智能·ai·stable diffusion·ai绘画
花千树-0102 天前
Milvus - GPU 索引类型及其应用场景
运维·人工智能·aigc·embedding·ai编程·milvus