Inconsistent Query Results Based on Output Fields Selection in Milvus Dashboard

**题意:**在Milvus仪表盘中基于输出字段选择的不一致查询结果

问题背景:

I'm experiencing an issue with the Milvus dashboard where the search results change based on the selected output fields.

I'm working on a RAG project using text data converted into embeddings, stored in a Milvus collection with around 8000 elements. Last week, my retrieval results matched my expectations ("good" results), however, this week, the results have degraded ("bad" results).

I found that when I exclude the embeddings_vector field from the output fields in the Milvus dashboard, I get the "good" results; Including the embeddings_vector field in the output changes the results to "bad".

I've attached two screenshots showing the difference in the results based on the selected output fields.

Any ideas on what's causing this or how to fix it?

Environment:

Python 3.11 pymilvus 2.3.2 llama_index 0.8.64

Thanks in advance!

python 复制代码
from llama_index.vector_stores import MilvusVectorStore
from llama_index import ServiceContext, VectorStoreIndex

# Some other lines..

# Setup for MilvusVectorStore and query execution
vector_store = MilvusVectorStore(uri=MILVUS_URI,
                                 token=MILVUS_API_KEY,
                                 collection_name=collection_name,
                                 embedding_field='embeddings_vector',
                                 doc_id_field='chunk_id',
                                 similarity_metric='IP',
                                 text_key='chunk_text')

embed_model = get_embeddings()
service_context = ServiceContext.from_defaults(embed_model=embed_model, llm=llm)
index = VectorStoreIndex.from_vector_store(vector_store=vector_store, service_context=service_context)
query_engine = index.as_query_engine(similarity_top_k=5, streaming=True)

rag_result = query_engine.query(prompt)

Here is the "good" result: "good" result And here is the "bad" result: "bad" result

问题解决:

I would like to suggest you to follow below considerations.

  • Ensure that your Milvus collection is correctly indexed. Indexing plays a crucial role in how search results are retrieved and ordered. If the index configuration has changed or is not optimized, it might affect the retrieval quality.
  • In your screenshots, the consistency level is set to "Bounded". Try experimenting with different consistency levels (e.g., "Strong" or "Eventually") to see if it impacts the results. Consistency settings can influence the real-time availability of the indexed data.
  • Review the query parameters, especially the similarity_metric. Since you're using IP (Inner Product) as the similarity metric, ensure that your embedding vectors are normalized correctly. Inner Product search works best with normalized vectors.
  • Verify that the embedding vectors are of consistent quality and scale. If there were changes in the embedding model or preprocessing steps, it could lead to variations in the search results.
  • The inclusion of the embeddings_vector field in the output might affect the way Milvus scores and ranks the results. It's possible that returning the raw embeddings affects the internal ranking logic. Ensure that including this field does not inadvertently alter the search behavior.
  • Check the Milvus server logs and performance metrics to identify any anomalies or changes in the search behavior. This might provide insights into why the results differ when the embeddings_vector field is included.
  • Ensure that there are no version mismatches between the client (pymilvus) and the Milvus server. Sometimes, discrepancies between versions can cause unexpected behavior.
  • As a last resort, try modifying your code to exclude the embeddings_vector field programmatically during retrieval and compare the results. This can help isolate whether the issue is indeed caused by including the embeddings in the output.
  • Please try out this code if it helps.
相关推荐
九章云极AladdinEdu2 天前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
CoderJia程序员甲2 天前
GitHub 热榜项目 - 日榜(2025-09-13)
ai·开源·大模型·github·ai教程
蒋星熠2 天前
如何在Anaconda中配置你的CUDA & Pytorch & cuNN环境(2025最新教程)
开发语言·人工智能·pytorch·python·深度学习·机器学习·ai
Code_流苏2 天前
AI热点周报(9.7~9.13):阿里Qwen3-Next震撼发布、Claude 增强记忆与服务抖动、OpenAI 聚焦模型规范化...
人工智能·gpt·ai·openai·claude·qwen3-next·架构创新
@鱼香肉丝没有鱼2 天前
分布式推理与量化部署
ai·大模型·推理部署
程序员鱼皮2 天前
AI 应用开发,不就是调个接口么?
计算机·ai·程序员·互联网·编程·网站
AImatters2 天前
2025 年PT展前瞻:人工智能+如何走进普通人的生活?
人工智能·ai·具身智能·智慧医疗·智慧出行·中国国际信息通信展览会·pt展
xiezhr2 天前
一款带有AI功能的markdown工具
ai·markdown·效率工具·笔记工具
武子康3 天前
AI-调查研究-76-具身智能 当机器人走进生活:具身智能对就业与社会结构的深远影响
人工智能·程序人生·ai·职场和发展·机器人·生活·具身智能
小鹿清扫日记3 天前
从蛮力清扫到 “会看路”:室外清洁机器人的文明进阶
人工智能·ai·机器人·扫地机器人·具身智能·连合直租·有鹿巡扫机器人