neo4j+LLM构建成品油&医疗跨领域知识图谱(初)&neo4j查询某个节点

全词查询

MATCH(n) WHERE n.name = '成品油' RETURN n

关键词查询:

MATCH (n) WHERE n.id CONTAINS '油' RETURN n

计算节点数

MATCH (n) RETURN count(n) AS number_of_nodes;

计算关系数:

MATCH ()-[r]->() RETURN count(r) AS number_of_relationships;

具体代码如下(仅做备份自查):

python 复制代码
from langchain_core.runnables import (
    RunnableBranch,
    RunnableLambda,
    RunnableParallel,
    RunnablePassthrough,
)
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.prompts.prompt import PromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field
from typing import Tuple, List, Optional
from langchain_core.messages import AIMessage, HumanMessage
from langchain_core.output_parsers import StrOutputParser
import os
from langchain_community.graphs import Neo4jGraph
from langchain.document_loaders import WikipediaLoader
from langchain.text_splitter import TokenTextSplitter
from langchain_openai import ChatOpenAI
from langchain_experimental.graph_transformers import LLMGraphTransformer
from neo4j import GraphDatabase
from yfiles_jupyter_graphs import GraphWidget
from langchain_community.vectorstores import Neo4jVector
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores.neo4j_vector import remove_lucene_chars
from langchain_core.runnables import ConfigurableField, RunnableParallel, RunnablePassthrough

try:
  import google.colab
  from google.colab import output
  output.enable_custom_widget_manager()
except:
  pass
python 复制代码
os.environ["OPENAI_API_KEY"] = "sk-**********"
os.environ["NEO4J_URI"] = "bolt://localhost:7687"
os.environ["NEO4J_USERNAME"] = "neo4j"
os.environ["NEO4J_PASSWORD"] = "123456cys"

graph = Neo4jGraph()
python 复制代码
# 假设你有一个本地文件路径
file_path = 'data/oil072801.txt'  # 替换为你的文件路径

# 读取本地文件内容
with open(file_path, 'r', encoding='utf-8') as file:
    raw_documents = file.read()

# 创建 Document 类,添加 metadata 属性
class Document:
    def __init__(self, content, metadata=None):
        self.page_content = content
        self.metadata = metadata  # 这里添加了 metadata 属性

# 创建文档对象,并设置 metadata 属性
documents = [Document(content, {'source': 'oil0728'}) for content in raw_documents.split('\n')]

# Define chunking strategy
text_splitter = TokenTextSplitter(chunk_size=512, chunk_overlap=24)
split_documents = text_splitter.split_documents(documents)

# Initialize the LLM
llm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo-0125")  # gpt-4-0125-preview occasionally has issues
llm_transformer = LLMGraphTransformer(llm=llm)

# Transform documents to graph documents
graph_documents = llm_transformer.convert_to_graph_documents(split_documents)

# 存储到 neo4j
graph.add_graph_documents(
    graph_documents,
    baseEntityLabel=True,
    include_source=True
)
相关推荐
数据智研8 分钟前
【数据分享】中国税务年鉴(1993-2024)(1998缺失)
大数据·人工智能·信息可视化·数据分析
麻雀无能为力12 分钟前
多媒体常用特征处理技术梳理
人工智能·深度学习·神经网络
居然JuRan42 分钟前
部署大模型需要多少GPU显存?一文教你精准计算
人工智能
数据库知识分享者小北43 分钟前
阿里云「RDS AI助手」正式上线:大模型驱动的数据库智能运维Copilot
人工智能
zstar-_1 小时前
我用AI做了一个3D六子棋游戏
人工智能·游戏
guslegend2 小时前
第2章:AI大模型知识和SpringAI核心案例实战
人工智能
魔镜前的帅比2 小时前
Prompt 模板化设计(PromptTemplate)
人工智能·chatgpt·prompt
maray2 小时前
在 MacOS 场景下体验 seekdb embeded
数据库·人工智能·seekdb
WWZZ20252 小时前
快速上手大模型:深度学习11(数据增强、微调、目标检测)
人工智能·深度学习·算法·目标检测·计算机视觉·大模型·具身智能
大白IT2 小时前
第四部分:决策规划篇——汽车的“大脑”(第8章:行为决策——车辆的“驾驶策略师”)
人工智能·算法·机器学习