Mindspore框架循环神经网络RNN模型实现情感分类|(四)损失函数与优化器

Mindspore框架循环神经网络RNN模型实现情感分类

Mindspore框架循环神经网络RNN模型实现情感分类|(一)IMDB影评数据集准备
Mindspore框架循环神经网络RNN模型实现情感分类|(二)预训练词向量
Mindspore框架循环神经网络RNN模型实现情感分类|(三)RNN模型构建

Mindspore框架循环神经网络RNN模型实现情感分类|(四)损失函数与优化器

Mindspore框架循环神经网络RNN模型实现情感分类|(五)模型训练与推理

tips :pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14


一、损失函数

完成模型主体构建后,选择损失函数和优化器。本项目情感分类问题的特性,即预测Positive或Negative的二分类问题,选择nn.BCEWithLogitsLoss(二分类交叉熵损失函数)。

关于损失函数的作用意义和梯度下降,在"损失函数自动微分+梯度下降"相关博客有详细讲解,请前往查阅。

此处,直接选择二分类交叉熵损失函数:nn.BCEWithLogitsLoss

python 复制代码
import mindspore.nn as nn
loss_fn = nn.BCEWithLogitsLoss(reduction='mean')

BCEWithLogitsLoss:

σ ( x ) = Sigmoid函数,log是自然对数。y是真实标签,p是预测值。

相较于BCELoss,

当然,BCELoss和BCEWithLogitsLoss一样,会遍历所有输出求均值

仅相差一个sigmoid函数对预测值进行处理。

所以,使用BCEWithLogitsLoss会直接计算输入值

python 复制代码
loss_fn = nn.BCEWithLogitsLoss()
loss = loss_fn (predicts, labels)

使用BCELoss,会额外调用nn.sigmoid()对p预测值进行处理。

python 复制代码
sig = nn.Sigmoid()
loss_bec = nn.BCELoss()
loss = loss_bec(sig(predicts), labels)

输出损失值一样:

二、优化器

Adam(Adaptive Moment Estimation) :它是利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率。前面我们提到损失函数和梯度下降,Loss = loss_fn (predicts, labels)=loss_fn([W(x)+b],y),x是数据,y是标签,为已知量,假设模型【w,b】组成的矩阵参数;其实损失函数loss是关于w和b的函数,我们已知了很多很多的(x,y)(即,标注的数据集),去求【w,b】的最优解。
求的方法:首先给【w,b】随机初始化一个初始值,将(x,y)一组(或者一批一批,并行)带到损失函数方程里面去求loss值;第一组loss1,计算第二组前让【w,b】变化lr(学习率),计算得到第二次loss2,要求修正【w,b】使后面的loss要越来越小;每次计算loss,都要修改一下模型参数(这是训练过程),确保loss递减,这个优化参数,修改参数的工具(算法)就是优化器。

python 复制代码
optimizer = nn.Adam(model.trainable_params(), learning_rate=lr)

深度学习的目标是通过不断改变网络模型参数值,使得参数能够对输入做各种非线性变换拟合输出,本质上就是一个函数去寻找最优解。

为了使模型输出逼近或达到最优值,需要用各种优化策略和算法,来更新和计算影响模型训练和模型输出的网络参数。

按吴恩达老师所说的:梯度下降(Gradient Descent)就好比一个人想从高山上奔跑到山谷最低点,用最快的方式(steepest)奔向最低的位置(minimum)。

tips:你可以想象,模型参数【w,b】中的每一位参数个人,听从优化器的统一指挥。"各就位,变!"

相关推荐
微学AI10 分钟前
融合注意力机制和BiGRU的电力领域发电量预测项目研究,并给出相关代码
人工智能·深度学习·自然语言处理·注意力机制·bigru
知来者逆22 分钟前
计算机视觉——速度与精度的完美结合的实时目标检测算法RF-DETR详解
图像处理·人工智能·深度学习·算法·目标检测·计算机视觉·rf-detr
一勺汤25 分钟前
YOLOv11改进-双Backbone架构:利用双backbone提高yolo11目标检测的精度
人工智能·yolo·双backbone·double backbone·yolo11 backbone·yolo 双backbone
武汉唯众智创27 分钟前
高职人工智能技术应用专业(计算机视觉方向)实训室解决方案
人工智能·计算机视觉·人工智能实训室·计算机视觉实训室·人工智能计算机视觉实训室
Johny_Zhao38 分钟前
MySQL 高可用集群搭建部署
linux·人工智能·mysql·信息安全·云计算·shell·yum源·系统运维·itsm
一只可爱的小猴子1 小时前
2022李宏毅老师机器学习课程笔记
人工智能·笔记·机器学习
地瓜机器人1 小时前
乐聚机器人与地瓜机器人达成战略合作,联合发布Aelos Embodied具身智能
人工智能·机器人
带娃的IT创业者1 小时前
《AI大模型趣味实战》基于RAG向量数据库的知识库AI问答助手设计与实现
数据库·人工智能
__Benco1 小时前
OpenHarmony - 小型系统内核(LiteOS-A)(十),魔法键使用方法,用户态异常信息说明
人工智能·harmonyos
小杨4041 小时前
python入门系列二十(peewee)
人工智能·python·pycharm