Mindspore框架循环神经网络RNN模型实现情感分类|(四)损失函数与优化器

Mindspore框架循环神经网络RNN模型实现情感分类

Mindspore框架循环神经网络RNN模型实现情感分类|(一)IMDB影评数据集准备
Mindspore框架循环神经网络RNN模型实现情感分类|(二)预训练词向量
Mindspore框架循环神经网络RNN模型实现情感分类|(三)RNN模型构建

Mindspore框架循环神经网络RNN模型实现情感分类|(四)损失函数与优化器

Mindspore框架循环神经网络RNN模型实现情感分类|(五)模型训练与推理

tips :pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14


一、损失函数

完成模型主体构建后,选择损失函数和优化器。本项目情感分类问题的特性,即预测Positive或Negative的二分类问题,选择nn.BCEWithLogitsLoss(二分类交叉熵损失函数)。

关于损失函数的作用意义和梯度下降,在"损失函数自动微分+梯度下降"相关博客有详细讲解,请前往查阅。

此处,直接选择二分类交叉熵损失函数:nn.BCEWithLogitsLoss

python 复制代码
import mindspore.nn as nn
loss_fn = nn.BCEWithLogitsLoss(reduction='mean')

BCEWithLogitsLoss:

σ ( x ) = Sigmoid函数,log是自然对数。y是真实标签,p是预测值。

相较于BCELoss,

当然,BCELoss和BCEWithLogitsLoss一样,会遍历所有输出求均值

仅相差一个sigmoid函数对预测值进行处理。

所以,使用BCEWithLogitsLoss会直接计算输入值

python 复制代码
loss_fn = nn.BCEWithLogitsLoss()
loss = loss_fn (predicts, labels)

使用BCELoss,会额外调用nn.sigmoid()对p预测值进行处理。

python 复制代码
sig = nn.Sigmoid()
loss_bec = nn.BCELoss()
loss = loss_bec(sig(predicts), labels)

输出损失值一样:

二、优化器

Adam(Adaptive Moment Estimation) :它是利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率。前面我们提到损失函数和梯度下降,Loss = loss_fn (predicts, labels)=loss_fn([W(x)+b],y),x是数据,y是标签,为已知量,假设模型【w,b】组成的矩阵参数;其实损失函数loss是关于w和b的函数,我们已知了很多很多的(x,y)(即,标注的数据集),去求【w,b】的最优解。
求的方法:首先给【w,b】随机初始化一个初始值,将(x,y)一组(或者一批一批,并行)带到损失函数方程里面去求loss值;第一组loss1,计算第二组前让【w,b】变化lr(学习率),计算得到第二次loss2,要求修正【w,b】使后面的loss要越来越小;每次计算loss,都要修改一下模型参数(这是训练过程),确保loss递减,这个优化参数,修改参数的工具(算法)就是优化器。

python 复制代码
optimizer = nn.Adam(model.trainable_params(), learning_rate=lr)

深度学习的目标是通过不断改变网络模型参数值,使得参数能够对输入做各种非线性变换拟合输出,本质上就是一个函数去寻找最优解。

为了使模型输出逼近或达到最优值,需要用各种优化策略和算法,来更新和计算影响模型训练和模型输出的网络参数。

按吴恩达老师所说的:梯度下降(Gradient Descent)就好比一个人想从高山上奔跑到山谷最低点,用最快的方式(steepest)奔向最低的位置(minimum)。

tips:你可以想象,模型参数【w,b】中的每一位参数个人,听从优化器的统一指挥。"各就位,变!"

相关推荐
阿坡RPA9 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
用户27784491049939 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
机器之心9 小时前
刚刚,DeepSeek公布推理时Scaling新论文,R2要来了?
人工智能
算AI11 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
凯子坚持 c12 小时前
基于飞桨框架3.0本地DeepSeek-R1蒸馏版部署实战
人工智能·paddlepaddle
你觉得20512 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
8K超高清12 小时前
中国8K摄像机:科技赋能文化传承新图景
大数据·人工智能·科技·物联网·智能硬件
hyshhhh13 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
薛定谔的猫-菜鸟程序员13 小时前
零基础玩转深度神经网络大模型:从Hello World到AI炼金术-详解版(含:Conda 全面使用指南)
人工智能·神经网络·dnn
币之互联万物13 小时前
2025 AI智能数字农业研讨会在苏州启幕,科技助农与数据兴业成焦点
人工智能·科技