简化数据流:Apache SeaTunnel实现多表同步的高效指南

Apache SeaTunnel除了单表之间的数据同步之外,也支持单表同步到多表,多表同步到单表,以及多表同步到多表,下面简单举例说明如何实现这些功能。

单表 to 单表

一个source,一个sink。

从mysql同步到mysql,中间不做区分

复制代码
env {
  # You can set flink configuration here
  execution.parallelism = 2
  job.mode = "BATCH"
}
source{
    Jdbc {
        url = "jdbc:mysql://127.0.0.1:3306/test"
        driver = "com.mysql.cj.jdbc.Driver"
        connection_check_timeout_sec = 100
        user = "user"
        password = "password"
        query = "select * from base_region"
    }
}

transform {
    # If you would like to get more information about how to configure seatunnel and see full list of transform plugins,
    # please go to https://seatunnel.apache.org/docs/transform/sql
}

sink {
  jdbc {
        url = "jdbc:mysql://127.0.0.1:3306/dw"
        driver = "com.mysql.cj.jdbc.Driver"
        connection_check_timeout_sec = 100
        user = "user"
        password = "password"
    query = "insert into base_region(id,region_name) values(?,?)"
  }
}

执行任务

复制代码
./bin/seatunnel.sh --config ./config/mysql2mysql_batch.conf

单表 to 多表

一个source,多个sink。

从MySQL同步到MySQL,将一个用户表数据同步过去,中间通过2个sql组件分布将男性用户和女性用户分开,在sink阶段分别插入到不同的表:

复制代码
env {
  execution.parallelism = 2
  job.mode = "BATCH"
}
source {
    Jdbc {
        url = "jdbc:mysql://127.0.0.1:3306/test"
        driver = "com.mysql.cj.jdbc.Driver"
        connection_check_timeout_sec = 100
        user = "user"
        password = "password"
        result_table_name="t_user"
        query = "select * from t_user;"
    }
}

transform {
  Sql {
    source_table_name = "t_user"
    result_table_name = "t_user_nan"
    query = "select id,name,birth,gender from t_user where gender ='男';"
  }
  Sql {
    source_table_name = "t_user"
    result_table_name = "t_user_nv"
    query = "select id,name,birth,gender from t_user where gender ='女';"
  }
}

sink {
  jdbc {
    url = "jdbc:mysql://127.0.0.1:3306/dw"
    driver = "com.mysql.cj.jdbc.Driver"
    connection_check_timeout_sec = 100
    user = "user"
    password = "password"
    source_table_name = "t_user_nan"
    query =  "insert into t_user_nan(id,name,birth,gender) values(?,?,?,?)"
  }
  jdbc {
    url = "jdbc:mysql://127.0.0.1:3306/dw"
    driver = "com.mysql.cj.jdbc.Driver"
    connection_check_timeout_sec = 100
    user = "user"
    password = "password"
    source_table_name = "t_user_nv"
    query =  "insert into t_user_nv(id,name,birth,gender) values(?,?,?,?)"
  }
}
./bin/seatunnel.sh --config ./config/mysql2mysql_1n.conf

多表 to 单表

多个source,一个sink。

假如有一张交换器使用情况表,一张路由器使用情况表,目标表是将这种数据合在一起的olap表。

表结构如下:

复制代码
-- dw 源表1
CREATE TABLE IF NOT EXISTS ads_device_switch_performance (
  `event_time` timestamp COMMENT '业务时间',
  `device_id` VARCHAR(32) COMMENT '设备id',
  `device_type` VARCHAR(32) COMMENT '设备类型',
  `device_name` VARCHAR(128) COMMENT '设备名称',
  `cpu_usage` INT COMMENT 'CPU使用率百分比'
) ;

INSERT INTO `ads_device_switch_performance` VALUES ('2024-01-15 14:25:11', '2001', '2', '交换器1', 49);
INSERT INTO `ads_device_switch_performance` VALUES ('2024-01-17 22:25:40', '2002', '1', '交换器2', 65);

-- dw 源表2
CREATE TABLE IF NOT EXISTS ads_device_router_performance (
  `event_time` timestamp COMMENT '业务时间',
  `device_id` VARCHAR(32) COMMENT '设备id',
  `device_type` VARCHAR(32) COMMENT '设备类型',
  `device_name` VARCHAR(128) COMMENT '设备名称',
  `cpu_usage` INT COMMENT 'CPU使用率百分比'
);

INSERT INTO `ads_device_router_performance` VALUES ('2024-01-17 21:23:22', '1001', '1', '路由器1', 35);
INSERT INTO `ads_device_router_performance` VALUES ('2024-01-16 17:23:53', '1002', '2', '路由器2', 46);


-------------------------------------------------------------------------------
-- olap 目标表
CREATE TABLE `device_performance` (
  `id` INT NOT NULL AUTO_INCREMENT COMMENT '表主键',
  `event_time` VARCHAR(32) NOT NULL COMMENT '业务时间',
  `device_id` VARCHAR(32) COMMENT '设备id',
  `device_type` VARCHAR(32) COMMENT '设备类型',
  `device_name` VARCHAR(128) NOT NULL COMMENT '设备名称',
  `cpu_usage` FLOAT NOT NULL COMMENT 'CPU利用率单位是%',
  `create_time` DATETIME NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
  `update_time` DATETIME NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '更新时间',
  PRIMARY KEY (`id`)
) COMMENT='设备状态';

将交换器数据和路由器数据一起同步到olap目标表,总结通过sql组件处理:

复制代码
env {
    job.mode="BATCH"
    job.name="device_performance"
}

source {
    Jdbc {
        url="jdbc:mysql://127.0.0.1:3306/dw?allowMultiQueries=true&characterEncoding=utf-8"
        driver="com.mysql.cj.jdbc.Driver"
        user = "user"
        password = "password"
        result_table_name="switch_src"
        query="SELECT `event_time`, `device_id`, `device_type`, `device_name`, `cpu_usage` FROM ads_device_switch_performance;"
    }
    Jdbc {
        url="jdbc:mysql://127.0.0.1:3306/dw?allowMultiQueries=true&characterEncoding=utf-8"
        driver="com.mysql.cj.jdbc.Driver"
        user = "user"
        password = "password"
        result_table_name="router_src"
        query="SELECT `event_time`, `device_id`, `device_type`, `device_name`, `cpu_usage` FROM ads_device_router_performance;"
    }
}

transform {
  Sql {
    source_table_name = "switch_src"
    result_table_name = "switch_dst"
    query = "SELECT  event_time , device_id, device_type, device_name, cpu_usage, NOW() AS create_time, NOW() AS update_time  FROM switch_src;"
  }
  Sql {
    source_table_name = "router_src"
    result_table_name = "router_dst"
    query = "SELECT event_time, device_id, device_type, device_name, cpu_usage, NOW() AS create_time, NOW() AS update_time FROM router_src;"
  }
}

sink {
    Jdbc {
        url="jdbc:mysql://127.0.0.1:3306/olap?allowMultiQueries=true&characterEncoding=utf-8"
        driver="com.mysql.cj.jdbc.Driver"
        user = "user"
        password = "password"
        source_table_name = "switch_dst"
        query="INSERT INTO device_performance  VALUES(null,?, ?, ?, ?, ?, ?, ?) ;"
      }
    Jdbc {
        url="jdbc:mysql://127.0.0.1:3306/olap?allowMultiQueries=true&characterEncoding=utf-8"
        driver="com.mysql.cj.jdbc.Driver"
        user = "user"
        password = "password"
        source_table_name = "router_dst"
        query="INSERT INTO device_performance  VALUES(null,?, ?, ?, ?, ?, ?, ?) ;"
       }
}

执行任务:

复制代码
./bin/seatunnel.sh --config ./syn_job/mysql2mysql_n1_batch.conf

作业成功!

多表 to 多表

多个source,多个sink。

将交换器使用情况数据和路由器使用情况数据分别同步到对应的目标表,中间sql组件处理

复制代码
env {
    job.mode="BATCH"
    job.name="device_performance"
}

source {
    Jdbc {
        url="jdbc:mysql://127.0.0.1:3306/dw?allowMultiQueries=true&characterEncoding=utf-8"
        driver="com.mysql.cj.jdbc.Driver"
        user = "user"
        password = "password"
        result_table_name="switch_src"
        query="SELECT `event_time`, `device_id`, `device_type`, `device_name`, `cpu_usage` FROM ads_device_switch_performance;"
    }
    Jdbc {
        url="jdbc:mysql://127.0.0.1:3306/dw?allowMultiQueries=true&characterEncoding=utf-8"
        driver="com.mysql.cj.jdbc.Driver"
        user = "user"
        password = "password"
        result_table_name="router_src"
        query="SELECT `event_time`, `device_id`, `device_type`, `device_name`, `cpu_usage` FROM ads_device_router_performance;"
    }
}

transform {
  Sql {
    source_table_name = "switch_src"
    result_table_name = "switch_dst"
    query = "SELECT  event_time , device_id, device_type, device_name, cpu_usage, NOW() AS create_time, NOW() AS update_time  FROM switch_src;"
  }
  Sql {
    source_table_name = "router_src"
    result_table_name = "router_dst"
    query = "SELECT event_time, device_id, device_type, device_name, cpu_usage, NOW() AS create_time, NOW() AS update_time FROM router_src;"
  }
}

sink {
    Jdbc {
        url="jdbc:mysql://127.0.0.1:3306/olap?allowMultiQueries=true&characterEncoding=utf-8"
        driver="com.mysql.cj.jdbc.Driver"
        user = "user"
        password = "password"
        source_table_name = "switch_dst"
        query="INSERT INTO device_performance_switch  VALUES(null,?, ?, ?, ?, ?, ?, ?) ;"
      }
    Jdbc {
        url="jdbc:mysql://127.0.0.1:3306/olap?allowMultiQueries=true&characterEncoding=utf-8"
        driver="com.mysql.cj.jdbc.Driver"
        user = "user"
        password = "password"
        source_table_name = "router_dst"
        query="INSERT INTO device_performance_router  VALUES(null,?, ?, ?, ?, ?, ?, ?) ;"
       }
}

结语

综上所述,Apache SeaTunnel多表同步技术具有高效、实时、可靠和灵活的特点,在企业的数据同步领域发挥着重要作用。借助Apache SeaTunnel多表同步功能,企业能够更好地实现不同系统和数据库之间数据的无缝流转,提升数据管理和利用的效率,为业务发展提供有力支持。希望本文能够帮助读者更好地了解和应用Apache SeaTunnel多表同步,从而为企业数据同步带来更多可能性。

原文链接:https://blog.csdn.net/weixin_44586883/article/details/136049897

本文由 白鲸开源科技 提供发布支持!

相关推荐
Edingbrugh.南空5 小时前
Flink自定义函数
大数据·flink
gaosushexiangji6 小时前
利用sCMOS科学相机测量激光散射强度
大数据·人工智能·数码相机·计算机视觉
无级程序员9 小时前
大数据平台之ranger与ldap集成,同步用户和组
大数据·hadoop
lifallen10 小时前
Paimon 原子提交实现
java·大数据·数据结构·数据库·后端·算法
TDengine (老段)10 小时前
TDengine 数据库建模最佳实践
大数据·数据库·物联网·时序数据库·tdengine·涛思数据
张先shen11 小时前
Elasticsearch RESTful API入门:全文搜索实战(Java版)
java·大数据·elasticsearch·搜索引擎·全文检索·restful
Elastic 中国社区官方博客11 小时前
Elasticsearch 字符串包含子字符串:高级查询技巧
大数据·数据库·elasticsearch·搜索引擎·全文检索·lucene
张先shen11 小时前
Elasticsearch RESTful API入门:全文搜索实战
java·大数据·elasticsearch·搜索引擎·全文检索·restful
天翼云开发者社区12 小时前
Doris-HDFS LOAD常见问题汇总(二)
大数据·doris
简婷1870199877512 小时前
源网荷储 + 零碳园区:一场关于能源与未来的双向奔赴
大数据·人工智能·能源