【Python机器学习】k-近邻算法简单实践——电影分类

k-近邻算法(KNN)的工作原理是:存在一个样本数据集合,也被称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系,输入没有标签的数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。

一般来说,我们只选择样本数据集中出现次数最多的分类,作为新数据分类。

分类场景:通过电影中打斗镜头和接吻镜头,使用k-近邻算法分类爱情片和动作片。

参考数据:

|-------|------|------|------|
| 电影名称 | 打斗镜头 | 接吻镜头 | 电影类型 |
| aaa | 3 | 104 | 爱情片 |
| bbb | 2 | 100 | 爱情片 |
| ccc | 1 | 81 | 爱情片 |
| ddd | 101 | 10 | 动作片 |
| eee | 99 | 5 | 动作片 |
| fff | 98 | 2 | 动作片 |
| zzzzz | 18 | 90 | ??? |

k近邻算法的一般流程:

1、收集数据

2、准备数据

3、分析数据

4、训练算法

5、测试算法

6、使用算法

准备:使用Python导入数据

首先,导入所需模块:

python 复制代码
from numpy import *
import operator

第一个是科学计算包Numpy;第二个是运算符模块。

然后创建createDataSet函数,它创建数据集合标签:

python 复制代码
def createDataSet():
    group=array([[3,104],[2,100],[1,81],[101,10],[99,5],[98,2]])
    labels=['A','A','A','B','B','B']
    return group,labels

这里有6组数据,每组数据有2个已知属性/特征值。

实施kNN分类算法:

运行kNN算法,为每组数据分类:首先,k-近邻算法伪代码:

对未知类别属性的数据集中的每个点依次执行以下操作:

1、计算已知类别数据集中的点与当前点之间的距离;

2、按照距离递增次序排队;

3、选取与当前点距离最小的k个点;

4、确定前k个点所在类别的出现频率;

5、返回前k个点出现频率最高的类别作为当前点的预测分类。

实际Python代码:

python 复制代码
def classify0(inX,dataSet,lables,k):
    dataSetSize=dataSet.shape[0]
    #举例计算
    diffMat=tile(inX,(dataSetSize,1))-dataSet
    sqDiffMat=diffMat**2
    sqDistinaces=sqDiffMat.sum(axis=1)
    distances=sqDistinaces**0.5
    sortedDistIndicies=distances.argsort()
    #选择举例最小的前k个点
    classCount={}
    for i in range(k):
        voteIlabel=lables[sortedDistIndicies[i]]
        classCount[voteIlabel]=classCount.get(voteIlabel,0)+1
        #print(classCount)
    #排序
    sortedClassCount=sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
    return sortedClassCount[0][0]

classify0()函数有4个输入参数:用于分类的输入向量是inX,输入的训练样本集为dataSet,标签向量为labels,最后的参数k表示用于选择最近邻居的数目,其中标签向量的元素数目和矩阵dataSet的行数相同。

计算完所有点之间的距离后,可以对数据按照从小到大的次序排序。然后,确定前k个距离最小元素所在的主要分类,输入k总是正整数;最后,将classCount字典分解为元组列表,然后使用程序第2行导入运算符模块的itemgetter方法,按照第二个元素的次序对元组进行排序。

实际运行:

python 复制代码
group,lables=createDataSet()
print(classify0([18,90],group,lables,3))
相关推荐
智能砖头4 分钟前
LangChain 与 LlamaIndex 深度对比与选型指南
人工智能·python
烟锁池塘柳01 小时前
【大模型】解码策略:Greedy Search、Beam Search、Top-k/Top-p、Temperature Sampling等
人工智能·深度学习·机器学习
风逸hhh1 小时前
python打卡day58@浙大疏锦行
开发语言·python
烛阴2 小时前
一文搞懂 Python 闭包:让你的代码瞬间“高级”起来!
前端·python
JosieBook2 小时前
【Java编程动手学】Java中的数组与集合
java·开发语言·python
Blossom.1183 小时前
机器学习在智能供应链中的应用:需求预测与物流优化
人工智能·深度学习·神经网络·机器学习·计算机视觉·机器人·语音识别
Gyoku Mint3 小时前
深度学习×第4卷:Pytorch实战——她第一次用张量去拟合你的轨迹
人工智能·pytorch·python·深度学习·神经网络·算法·聚类
葫三生4 小时前
如何评价《论三生原理》在科技界的地位?
人工智能·算法·机器学习·数学建模·量子计算
有Li9 小时前
通过具有一致性嵌入的大语言模型实现端到端乳腺癌放射治疗计划制定|文献速递-最新论文分享
论文阅读·深度学习·分类·医学生
郭庆汝9 小时前
pytorch、torchvision与python版本对应关系
人工智能·pytorch·python