大模型学习笔记十四:Agent模型微调

文章目录

一、大模型需要Agent技术的原因

  • 需求

    1、帮我查一下今天的销售额?

    2、(开车时)前方为啥堵车了?

    3、刘德华多少岁了

    4、请帮我约一个和搜索产品部的需求沟通会,本周三至周五我日历上空闲的时间都可以;

    5、帮我订一张周五去上海的机票

  • 原因

    1、大模型的"幻觉"问题,很难在从模型本身上彻底解决,在严肃的应用场景需要通过引入外部知识确保答案的准确;

    2、大模型参数无法做到实时更新,本身也无法与真实世界产生实时连接,在多数场景下难以满足实际需求;

    3、复杂的业务场景需要

  • 大模型技术框架回顾

二、Prompt Engineering可以实现Agent吗?

  • 回答

    可以,前面弄的AutoGPT就是例子。除了AutoGPT外,还有ReACT、ModelScope、ToolLLaMA等不同的形式。

  • 主流Agent prompt的比较

三、既然AutoGPT可以满足需求,为什么要额外训练一个Agent模型?

  • 解答
    1、很多场景下无法使用大模型API,需要私有化部署;
    2、实践证明,除了GPT4 level的大模型,其他大模型(包括GPT3.5)无法很好遵从prompt要求完成复杂的Agent任务;
    3、通过训练,一个小参数量的大模型(13B、7B等)也能达到较好的能力,更加实用

四、怎么去训练一个Agent模型?

  • 目标
    攀登背景最高峰,帮忙做个规划
  • 规划图

1)数据准备和处理

2)模型训练

3)模型效果评估

五、如何提高Agent的泛化性?

1)Meta-Agent

2)训练数据构建

六、开源项目介绍

七、总结

1、Agent Tuning 的主要动机是训练大模型的 Agent 能力,尤其是希望通过训练让小参数量模型也能具备特定业务场景的 Agent 能力;

2、Agent Prompt 可以有不同的描述方式,通常包括Profile、Instruction、Tools、Format、Memory、Goal等部分;

3、可以采用自动评估和人工评估相结合的方法来评估 Agent 能力;

4、采用 Meta-Agent 方法可以构建多样性的 Agent Prompt 模板,再结合Query、Tools的多样化,可以训练出能力更加泛化的模型

相关推荐
小A15917 分钟前
STM32完全学习——系统时钟设置
stm32·嵌入式硬件·学习
2301_7752811923 分钟前
柯桥生活英语口语学习“面坨了”英语怎么表达?
学习·生活
江梦寻30 分钟前
思科模拟器路由器配置实验
开发语言·网络·网络协议·学习·计算机网络
金星娃儿1 小时前
MATLAB基础知识笔记——(矩阵的运算)
笔记·matlab·矩阵
一只特立独行的程序猿1 小时前
关于GCC内联汇编(也可以叫内嵌汇编)的简单学习
汇编·学习·gcc
虾球xz1 小时前
游戏引擎学习第10天
学习·游戏引擎
Chef_Chen1 小时前
从0开始学习机器学习--Day25--SVM作业
学习·机器学习·支持向量机
L_cl1 小时前
Python学习从0到1 day28 Python 高阶技巧 ⑧ 递归
学习
vortex51 小时前
Vim 编辑器学习笔记
学习·编辑器·vim
源于花海1 小时前
论文学习(四) | 基于数据驱动的锂离子电池健康状态估计和剩余使用寿命预测
论文阅读·人工智能·学习·论文笔记