二百四十五、海豚调度器——用DolphinScheduler调度执行复杂的HiveSQL(HQL包含多种海豚无法正确识别的符号)

一、目的

在Hive中完成复杂JSON,既有对象还有数组而且数组中包含数组的解析后,原本以为没啥问题了,结果在DolphinScheduler中调度又出现了大问题,搞了一天、试了很多种方法、死了无数脑细胞,才解决了这个问题!

二、HiveSQL

复制代码
insert  overwrite  table  hurys_dc_dwd.dwd_json_statistics partition(day)
select
        t1.device_no,
        source_device_type,
        sn,
        model,
        create_time,
        cycle,
        get_json_object(coil_list,'$.laneNo')  lane_no,
        get_json_object(coil_list,'$.laneType')           lane_type,
        section_no,
        get_json_object(coil_list,'$.coilNo')             coil_no,
        get_json_object(coil_list,'$.volumeSum')          volume_sum,
        get_json_object(coil_list,'$.volumePerson')       volume_person,
        get_json_object(coil_list,'$.volumeCarNon')       volume_car_non,
        get_json_object(coil_list,'$.volumeCarSmall')     volume_car_small,
        get_json_object(coil_list,'$.volumeCarMiddle')    volume_car_middle,
        get_json_object(coil_list,'$.volumeCarBig')       volume_car_big,
        get_json_object(coil_list,'$.speedAvg')           speed_avg,
        get_json_object(coil_list,'$.speed85')            speed_85,
        get_json_object(coil_list,'$.timeOccupancy')      time_occupancy,
        get_json_object(coil_list,'$.averageHeadway')     average_headway,
        get_json_object(coil_list,'$.averageGap')         average_gap,
        substr(create_time,1,10) day
from (select
       get_json_object(statistics_json,'$.deviceNo')          device_no,
       get_json_object(statistics_json,'$.sourceDeviceType')  source_device_type,
       get_json_object(statistics_json,'$.sn')                sn,
       get_json_object(statistics_json,'$.model')             model,
       get_json_object(statistics_json,'$.createTime')        create_time ,
       get_json_object(statistics_json,'$.data.cycle')        cycle,
       get_json_object(replace(replace(section_list,':{',':[{'),'}}','}]}'),'$.sectionNo') section_no,
       section_list
from hurys_dc_ods.ods_statistics
lateral view explode(split(replace(replace(replace(get_json_object(statistics_json,'$.data.sectionList'),
    '[',''),']',''),'},{"sectionNo"','}|{"sectionNo"'),"\\|")) tf as section_list
    where day='2024-07-18' --  date_sub(current_date(), 1)   -- '2024-07-18' --
    ) as t1
lateral view explode(split(replace(replace(replace(get_json_object(replace(replace(section_list,
    ':{',':[{'),'}}','}]}'),'$.coilList'),'[',''),']',''),'},','}|'),"\\|")) tf1 as coil_list
    where substr(create_time,1,10) =  '2024-07-18' --date_sub(current_date(), 1)   --'2024-07-17'
;

三、原先海豚任务的调度方式

在shell脚本里添加HiveSQL语句

#! /bin/bash

source /etc/profile

nowdate=`date --date='0 days ago' "+%Y%m%d"`

yesdate=`date -d yesterday +%Y-%m-%d`

hive -e "

use hurys_dc_dwd;

set hive.vectorized.execution.enabled=false;

set hive.exec.dynamic.partition=true;

set hive.exec.dynamic.partition.mode=nonstrict;

set hive.exec.max.dynamic.partitions.pernode=1000;

set hive.exec.max.dynamic.partitions=1500;

with t1 as(

select

get_json_object(statistics_json,'$.deviceNo') device_no,

get_json_object(statistics_json,'$.sourceDeviceType') source_device_type,

get_json_object(statistics_json,'$.sn') sn,

get_json_object(statistics_json,'$.model') model,

get_json_object(statistics_json,'$.createTime') create_time ,

get_json_object(statistics_json,'$.data.cycle') cycle,

get_json_object(replace(replace(section_list,':{',':[{'),'}}','}]}'),'$.sectionNo') section_no,

section_list

from hurys_dc_ods.ods_statistics

lateral view explode(split(replace(replace(replace(get_json_object(statistics_json,'$.data.sectionList'),'[',''),']',''),'},{"sectionNo"','}|{"sectionNo"'),"\\\\|")) tf as section_list

where day='$yesdate'

)

insert overwrite table hurys_dc_dwd.dwd_json_statistics partition(day)

select

t1.device_no,

source_device_type,

sn,

model,

substr(create_time,1,19) create_time ,

cycle,

get_json_object(coil_list,'$.laneNo') lane_no,

get_json_object(coil_list,'$.laneType') lane_type,

section_no,

get_json_object(coil_list,'$.coilNo') coil_no,

get_json_object(coil_list,'$.volumeSum') volume_sum,

get_json_object(coil_list,'$.volumePerson') volume_person,

get_json_object(coil_list,'$.volumeCarNon') volume_car_non,

get_json_object(coil_list,'$.volumeCarSmall') volume_car_small,

get_json_object(coil_list,'$.volumeCarMiddle') volume_car_middle,

get_json_object(coil_list,'$.volumeCarBig') volume_car_big,

get_json_object(coil_list,'$.speedAvg') speed_avg,

get_json_object(coil_list,'$.speed85') speed_85,

get_json_object(coil_list,'$.timeOccupancy') time_occupancy,

get_json_object(coil_list,'$.averageHeadway') average_headway,

get_json_object(coil_list,'$.averageGap') average_gap,

substr(create_time,1,10) day

from t1

lateral view explode(split(replace(replace(replace(get_json_object(replace(replace(section_list,':{',':[{'),'}}','}]}'),'$.coilList'),'[',''),']',''),'},','}|'),"\\\\|")) tf1 as coil_list

where substr(create_time,1,10) ='$yesdate'

"

四、原先方式报错日志

海豚无法正确识别HiveSQL里解析复杂JSON的多种符号

五、解决方式

把HiveSQL放在一个SQL文件里,然后在脚本里是执行Hive的sourceSQL文件

1 SQL文件

--使用hurys_dc_ods数据库

use hurys_dc_dwd;

--hive调优(必须先执行调优语句,否则部分复杂SQL运行会有问题)

set hive.vectorized.execution.enabled=false;

--开启动态分区功能(默认 true,开启)

set hive.exec.dynamic.partition=true;

--设置为非严格模式 nonstrict 模式表示允许所有的分区字段都可以使用动态分区

set hive.exec.dynamic.partition.mode=nonstrict;

--在每个执行 MR 的节点上,最大可以创建多少个动态分区

set hive.exec.max.dynamic.partitions.pernode=1000;

--在所有执行 MR 的节点上,最大一共可以创建多少个动态分区。默认 1000

set hive.exec.max.dynamic.partitions=1500;

insert overwrite table hurys_dc_dwd.dwd_json_statistics partition(day)

select

t1.device_no,

source_device_type,

sn,

model,

create_time,

cycle,

get_json_object(coil_list,'$.laneNo') lane_no,

get_json_object(coil_list,'$.laneType') lane_type,

section_no,

get_json_object(coil_list,'$.coilNo') coil_no,

get_json_object(coil_list,'$.volumeSum') volume_sum,

get_json_object(coil_list,'$.volumePerson') volume_person,

get_json_object(coil_list,'$.volumeCarNon') volume_car_non,

get_json_object(coil_list,'$.volumeCarSmall') volume_car_small,

get_json_object(coil_list,'$.volumeCarMiddle') volume_car_middle,

get_json_object(coil_list,'$.volumeCarBig') volume_car_big,

get_json_object(coil_list,'$.speedAvg') speed_avg,

get_json_object(coil_list,'$.speed85') speed_85,

get_json_object(coil_list,'$.timeOccupancy') time_occupancy,

get_json_object(coil_list,'$.averageHeadway') average_headway,

get_json_object(coil_list,'$.averageGap') average_gap,

substr(create_time,1,10) day

from (select

get_json_object(statistics_json,'$.deviceNo') device_no,

get_json_object(statistics_json,'$.sourceDeviceType') source_device_type,

get_json_object(statistics_json,'$.sn') sn,

get_json_object(statistics_json,'$.model') model,

get_json_object(statistics_json,'$.createTime') create_time ,

get_json_object(statistics_json,'$.data.cycle') cycle,

get_json_object(replace(replace(section_list,':{',':[{'),'}}','}]}'),'$.sectionNo') section_no,

section_list

from hurys_dc_ods.ods_statistics

lateral view explode(split(replace(replace(replace(get_json_object(statistics_json,'$.data.sectionList'),'[',''),']',''),'},{"sectionNo"','}|{"sectionNo"'),"\\|")) tf as section_list
where day= date_sub(current_date(), 1)

) as t1

lateral view explode(split(replace(replace(replace(get_json_object(replace(replace(section_list,':{',':[{'),'}}','}]}'),'$.coilList'),'[',''),']',''),'},','}|'),"\\|")) tf1 as coil_list
where substr(create_time,1,10) = date_sub(current_date(), 1)

;

2 海豚任务执行脚本

#! /bin/bash

source /etc/profile

nowdate=`date --date='0 days ago' "+%Y-%m-%d"`

yesdate=`date -d yesterday +%Y-%m-%d`

hive -e "

source dwd_json_statistics.sql

"

3 执行任务,验证结果

终于解决了,以后碰到类似调度器识别不了SQL里符号的问题,实在不行就用这个方法,把SQL放在SQL文件里,然后在脚本里执行这个SQL文件就行了,这样就能规避这类问题了

相关推荐
数据要素X9 分钟前
寻梦数据空间 | 架构篇:从概念到落地的技术实践与突破性创新
大数据·运维·数据仓库·微服务·数据治理·数据中台·可信数据空间
IT学长编程2 小时前
计算机毕业设计 基于EChants的海洋气象数据可视化平台设计与实现 Python 大数据毕业设计 Hadoop毕业设计选题【附源码+文档报告+安装调试】
大数据·hadoop·python·毕业设计·课程设计·毕业论文·海洋气象数据可视化平台
呆呆小金人2 小时前
SQL入门: HAVING用法全解析
大数据·数据库·数据仓库·sql·数据库开发·etl·etl工程师
Elastic 中国社区官方博客3 小时前
如何减少 Elasticsearch 集群中的分片数量
大数据·数据库·elasticsearch·搜索引擎·全文检索
知识浅谈4 小时前
Elasticsearch 核心知识点全景解读
大数据·elasticsearch·搜索引擎
武子康4 小时前
大数据-120 - Flink滑动窗口(Sliding Window)详解:原理、应用场景与实现示例 基于时间驱动&基于事件驱动
大数据·后端·flink
Hello.Reader4 小时前
Flink 广播状态(Broadcast State)实战从原理到落地
java·大数据·flink
ApacheSeaTunnel4 小时前
从小时级到分钟级:多点DMALL如何用Apache SeaTunnel把数据集成成本砍到1/3?
大数据·开源·数据集成·seatunnel·技术分享
数据要素X4 小时前
寻梦数据空间 | 路径篇:从概念验证到规模运营的“诊-规-建-运”实施指南
大数据·人工智能·数据要素·数据资产·可信数据空间
big-data14 小时前
Paimon系列:主键表流读之changelog producer
大数据