神经网络与注意力机制的权重学习对比:公式探索

神经网络与注意力机制的权重学习对比:公式探索

注意力机制与神经网络权重学习的核心差异

在探讨神经网络与注意力机制的权重学习时,一个核心差异在于它们如何处理输入数据的权重。神经网络通常通过反向传播算法学习权重,而注意力机制则通过学习数据的"重要性"权重来增强模型的性能。

这里,我们重点探讨注意力机制中的关键公式及其推导。

注意力机制的核心公式

注意力机制的核心在于计算查询( Q Q Q)和键( K K K)之间的相似度,并用这个相似度去加权值( V V V)。公式如下:

Attention ( Q , K , V ) = softmax ( Q K T d k ) V \text{Attention}(Q, K, V) = \text{softmax}(\frac{QK^T}{\sqrt{d_k}})V Attention(Q,K,V)=softmax(dk QKT)V

其中, Q Q Q是查询矩阵, K K K是键矩阵, V V V是值矩阵, d k d_k dk是键向量的维度。

通俗解释

在注意力机制中,我们想要知道哪些输入数据对当前的输出更重要。查询( Q Q Q)和键( K K K)的点积可以帮助我们计算这种"重要性"。但是,当数据的维度很高时,点积的结果可能变得非常大,使得softmax函数难以处理。因此,我们引入了一个缩放因子 1 d k \frac{1}{\sqrt{d_k}} dk 1来调整点积的结果,使其更适合softmax函数处理。最后,我们用softmax的结果作为权重去加权值( V V V),得到最终的输出。

具体来说:

项目 描述
查询( Q Q Q) 表示当前的输入或状态,用于与键进行匹配。
键( K K K) 表示所有的输入数据,与查询进行匹配以计算重要性。
值( V V V) 表示与键相对应的实际数据,用于最终的加权输出。
点积 查询和键的点积表示它们之间的相似度或"重要性"。
缩放因子 用于调整点积结果,使其适合softmax函数处理。
softmax函数 将相似度转换为概率分布,表示不同数据的重要性。

公式推导

  1. 计算相似度

    首先,计算查询( Q Q Q)和键( K K K)的点积,得到相似度矩阵 S S S:
    S = Q K T S = QK^T S=QKT

  2. 引入缩放因子

    为了防止点积结果过大,引入缩放因子 1 d k \frac{1}{\sqrt{d_k}} dk 1:
    S ^ = S d k \hat{S} = \frac{S}{\sqrt{d_k}} S^=dk S

  3. 应用softmax函数

    将缩小的相似度矩阵 S ^ \hat{S} S^输入到softmax函数中,得到概率分布矩阵 A A A:
    A = softmax ( S ^ ) A = \text{softmax}(\hat{S}) A=softmax(S^)

  4. 加权输出

    最后,用softmax的输出 A A A作为权重去加权值( V V V),得到最终的输出 O O O:
    O = A V O = AV O=AV

#注意力机制

#神经网络

#权重学习

#点积相似度

#缩放因子

#softmax函数

相关推荐
智驱力人工智能5 分钟前
智慧零售管理中的客流统计与属性分析
人工智能·算法·边缘计算·零售·智慧零售·聚众识别·人员计数
我的golang之路果然有问题9 分钟前
云服务器部署Gin+gorm 项目 demo
运维·服务器·后端·学习·golang·gin
workflower23 分钟前
以光量子为例,详解量子获取方式
数据仓库·人工智能·软件工程·需求分析·量子计算·软件需求
壹氿27 分钟前
Supersonic 新一代AI数据分析平台
人工智能·数据挖掘·数据分析
张较瘦_33 分钟前
[论文阅读] 人工智能 | 搜索增强LLMs的用户偏好与性能分析
论文阅读·人工智能
我不是小upper44 分钟前
SVM超详细原理总结
人工智能·机器学习·支持向量机
Yxh181377845541 小时前
抖去推--短视频矩阵系统源码开发
人工智能·python·矩阵
Lester_11011 小时前
嵌入式学习笔记 - freeRTOS xTaskResumeAll( )函数解析
笔记·stm32·单片机·学习·freertos
jackson凌1 小时前
【Java学习笔记】Math方法
java·笔记·学习
Humbunklung1 小时前
PySide6 GUI 学习笔记——常用类及控件使用方法(多行文本控件QTextEdit)
笔记·python·学习·pyqt