ITK-中值滤波

作者:翟天保Steven

版权声明:著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处

中值滤波原理

中值滤波是一种常用的非线性滤波技术,用于去除图像中的噪声,特别是椒盐噪声和脉冲噪声。它通过在图像中移动一个窗口,并用窗口内像素的中值替换中心像素的值,从而达到去噪的效果。

可以概括为以下几个步骤:

  1. 选择滤波窗口:定义一个窗口(通常是矩形或方形),该窗口覆盖目标像素及其邻域像素。窗口的大小由用户指定,例如3×3、5×5等。

  2. 移动窗口:将窗口依次移动到图像中的每一个像素位置,逐个处理每个像素。

  3. 计算中值:对于窗口覆盖的每一个位置,按像素值大小排序,然后选择中间的值作为中值。如果窗口包含奇数个像素,中值就是排序后中间位置的像素值;如果窗口包含偶数个像素,中值是排序后中间两个像素值的平均值或其中之一。

  4. 替换像素值:用计算得到的中值替换当前窗口中心像素的值。

中值滤波具有以下效果和优点:

  1. 去除噪声:中值滤波特别适用于去除椒盐噪声和脉冲噪声,因为它能够有效地过滤掉极值点(即噪声),而不会过多影响其他像素。

  2. 保留边缘:与均值滤波不同,中值滤波能够更好地保留图像中的边缘和细节。因为中值滤波是基于像素排序的非线性操作,边缘不会像均值滤波那样被模糊掉。

  3. 鲁棒性:中值滤波对图像中的孤立噪声点有很强的鲁棒性,能够保持图像的结构和细节。

中值滤波在图像处理和计算机视觉中有广泛的应用,尤其是在图像预处理阶段,用于去除噪声、平滑图像等。它在医学图像处理、卫星图像分析和工业检测等领域中得到了广泛应用。

环境准备

参见:Windows下用CMake编译ITK及配置测试_itk配置-CSDN博客

功能解析

1.引入必要的头文件:

#include <itkImage.h>
#include <itkImageFileReader.h>
#include <itkImageFileWriter.h>
#include <itkMedianImageFilter.h>
#include <itkRescaleIntensityImageFilter.h>
#include <itkJPEGImageIOFactory.h>
#include <itkCastImageFilter.h>

2.初始化图像类型和读写器:

typedef itk::Image<unsigned char, 2> CharImageType;
typedef itk::Image<float, 2> FloatImageType;
typedef itk::ImageFileReader<CharImageType> ReaderType;
typedef itk::ImageFileWriter<CharImageType> WriterType;
itk::JPEGImageIOFactory::RegisterOneFactory();
ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();

3.设置文件名:

// 设置
reader->SetFileName("test.jpg");            // 要读取的文件名
writer->SetFileName("median_output3.jpg");    // 写入的文件名

4.类型转换:

// 类型转换
typedef itk::CastImageFilter<CharImageType, FloatImageType> CastFilterType;
CastFilterType::Pointer castfilter = CastFilterType::New();
castfilter->SetInput(reader->GetOutput());

5.创建中值滤波器,并配置参数:

// 创建中值滤波器
typedef itk::MedianImageFilter<FloatImageType, FloatImageType> FilterType;
FilterType::Pointer filter = FilterType::New();
filter->SetInput(castfilter->GetOutput());
// 设置参数
FilterType::InputSizeType radius;
radius.Fill(3); // 设置中值滤波器的半径
filter->SetRadius(radius);

6.类型转换:

// 将浮点图像转换为unsigned char类型
typedef itk::RescaleIntensityImageFilter<FloatImageType, CharImageType> RescaleFilterType;
RescaleFilterType::Pointer castfilter2 = RescaleFilterType::New();
castfilter2->SetInput(filter->GetOutput());

7.连接过滤器输出到写入器并执行写入操作:

writer->SetInput(castfilter2->GetOutput());
try
{
    writer->Update();
}
catch (itk::ExceptionObject &error)
{
    std::cerr << "Error: " << error << std::endl;
    return EXIT_FAILURE;
}

完整代码

#include <itkImage.h>
#include <itkImageFileReader.h>
#include <itkImageFileWriter.h>
#include <itkMedianImageFilter.h>
#include <itkRescaleIntensityImageFilter.h>
#include <itkJPEGImageIOFactory.h>
#include <itkCastImageFilter.h>

int main()
{
	// 初始化
	typedef itk::Image<unsigned char, 2> CharImageType;
	typedef itk::Image<float, 2> FloatImageType;
	typedef itk::ImageFileReader<CharImageType> ReaderType;
	typedef itk::ImageFileWriter<CharImageType> WriterType;
	itk::JPEGImageIOFactory::RegisterOneFactory();
	ReaderType::Pointer reader = ReaderType::New();
	WriterType::Pointer writer = WriterType::New();

	// 设置
	reader->SetFileName("test.jpg");            // 要读取的文件名
	writer->SetFileName("median_output3.jpg");    // 写入的文件名

	// 类型转换
	typedef itk::CastImageFilter<CharImageType, FloatImageType> CastFilterType;
	CastFilterType::Pointer castfilter = CastFilterType::New();
	castfilter->SetInput(reader->GetOutput());

	// 创建中值滤波器
	typedef itk::MedianImageFilter<FloatImageType, FloatImageType> FilterType;
	FilterType::Pointer filter = FilterType::New();
	filter->SetInput(castfilter->GetOutput());

	// 设置参数
	FilterType::InputSizeType radius;
	radius.Fill(3); // 设置中值滤波器的半径
	filter->SetRadius(radius);

	// 将浮点图像转换为unsigned char类型
	typedef itk::RescaleIntensityImageFilter<FloatImageType, CharImageType> RescaleFilterType;
	RescaleFilterType::Pointer castfilter2 = RescaleFilterType::New();
	castfilter2->SetInput(filter->GetOutput());

	// 输出
	writer->SetInput(castfilter2->GetOutput());
	try
	{
		writer->Update();
	}
	catch (itk::ExceptionObject &error)
	{
		std::cerr << "Error: " << error << std::endl;
		return EXIT_FAILURE;
	}

	std::cout << "Median filtering completed successfully." << std::endl;
	return EXIT_SUCCESS;
}

测试效果

通过调整参数,可以实现不同的滤波效果。

如果文章帮助到你了,可以点个赞让我知道,我会很快乐~加油!

相关推荐
Coovally AI模型快速验证23 分钟前
MMYOLO:打破单一模式限制,多模态目标检测的革命性突破!
人工智能·算法·yolo·目标检测·机器学习·计算机视觉·目标跟踪
AI浩1 小时前
【面试总结】FFN(前馈神经网络)在Transformer模型中先升维再降维的原因
人工智能·深度学习·计算机视觉·transformer
可为测控1 小时前
图像处理基础(4):高斯滤波器详解
人工智能·算法·计算机视觉
old_power5 小时前
【PCL】Segmentation 模块—— 基于图割算法的点云分割(Min-Cut Based Segmentation)
c++·算法·计算机视觉·3d
博观而约取,厚积而薄发6 小时前
激光雷达和相机早期融合
图像处理
PaLu-LI6 小时前
ORB-SLAM2源码学习:Initializer.cc⑧: Initializer::CheckRT检验三角化结果
c++·人工智能·opencv·学习·ubuntu·计算机视觉
清图8 小时前
Python 预训练:打通视觉与大语言模型应用壁垒——Python预训练视觉和大语言模型
人工智能·python·深度学习·机器学习·计算机视觉·自然语言处理·ai作画
pchmi11 小时前
C# OpenCV机器视觉:红外体温检测
人工智能·数码相机·opencv·计算机视觉·c#·机器视觉·opencvsharp
好评笔记12 小时前
AIGC视频扩散模型新星:Video 版本的SD模型
论文阅读·深度学习·机器学习·计算机视觉·面试·aigc·transformer
Fxrain12 小时前
[Computer Vision]实验三:图像拼接
人工智能·计算机视觉