基于opencv[python]的人脸检测

1 图片爬虫

这里的代码转载自:http://t.csdnimg.cn/T4R4F

python 复制代码
# 获取图片数据
import os.path
import fake_useragent
import requests
from lxml import etree

# UA伪装
head = {"User-Agent": fake_useragent.UserAgent().random}

pic_name = 0
def request_pic(url):
    # 发送请求
    response = requests.get(url, headers=head)
    # 获取想要的数据
    res_text = response.text
    # 数据解析
    tree = etree.HTML(res_text)
    li_list = tree.xpath("//div[@class='slist']/ul/li")
    for li in li_list:
        # 图片的url
        img_url = "https://pic.netbian.com" + "".join(li.xpath("./a/img/@src"))
        # 发送请求
        img_response = requests.get(img_url, headers=head)
        # 获取想要的数据
        img_content = img_response.content
        global pic_name
        with open(f"./picLib/{pic_name}.jpg", "wb") as fp:
            fp.write(img_content)
        pic_name += 1

if __name__ == '__main__':
    # 创建存放照片的文件夹
    if not os.path.exists("./picLib"):
        os.mkdir("./picLib")
    # 网站的url
    url = "https://pic.netbian.com/4kdongman/"
    request_pic(url)
    for i in range(1,10):
        next_url = f"https://pic.netbian.com/4kmeinv/index_{i}.html"
        request_pic(next_url)

结果如图1-1所示:

图 1-1

2 基于opencv自带分类器的人脸检测

python 复制代码
import cv2  
import os  
import matplotlib.pyplot as plt  
  
# 定义人脸检测器的路径  
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')  
  
# 设置图片文件夹路径  
folder_path = 'picLib'  
  
# 设置要显示的图像数量  
num_to_display = 5  # 例如,只显示前4张图像  
  
# 创建一个图形和子图  
fig, axs = plt.subplots(1, num_to_display, figsize=(15, 5))  
  
# 遍历文件夹中的前几张图片  
for i in range(num_to_display):  
    file_name = f'{i}.jpg'  
    image_path = os.path.join(folder_path, file_name)  
  
    # 读取图片  
    img = cv2.imread(image_path)  
    if img is None:  
        print(f"Error loading image {file_name}")  
        continue  
  
    # 转换为灰度图  
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  
  
    # 检测人脸  
    faces = face_cascade.detectMultiScale(gray, 1.3, 5)  
  
    # 在原图上绘制矩形框  
    for (x, y, w, h) in faces:  
        cv2.rectangle(img, (x, y), (x+w, y+h), (255, 0, 0), 2)  
  
    # 注意:OpenCV 图像是BGR,而Matplotlib 期望的是RGB,因此我们需要转换颜色通道  
    img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  
  
    # 显示图像  
    axs[i].imshow(img_rgb)  
    axs[i].axis('off')  # 关闭坐标轴  
  
# 显示图形  
plt.show()  

运行结果如图2-1所示:

图 2-1

从这里可以清晰看到有1/3的图像没有成功检测到,后面我试试用Faster R-CNN模型,不过需要标注,数据量也大,这里先试着玩玩呗。

相关推荐
向阳蒲公英4 分钟前
Pycharm2025版本配置Anaconda步骤
python
Darkershadow10 分钟前
蓝牙学习之uuid与mac
python·学习·ble
北海有初拥14 分钟前
Python基础语法万字详解
java·开发语言·python
Mqh1807621 小时前
day61 经典时序模型3
python
我想吃烤肉肉1 小时前
logger比print优秀之处
python
Cosmoshhhyyy1 小时前
《Effective Java》解读第32条:谨慎并用泛型和可变参数
java·python
Cherry的跨界思维1 小时前
【AI测试全栈:Vue核心】19、Vue3+ECharts实战:构建AI测试可视化仪表盘全攻略
前端·人工智能·python·echarts·vue3·ai全栈·ai测试全栈
海棠AI实验室1 小时前
第十七章 调试与排错:读懂 Traceback 的方法论
python·pandas·调试
2501_941878741 小时前
在奥克兰云原生实践中构建动态配置中心以支撑系统稳定演进的工程经验总结
开发语言·python
Rabbit_QL1 小时前
【Pytorch使用】CUDA 显存管理与 OOM 排查实战:以 PyTorch 联邦学习训练为例
人工智能·pytorch·python