Python--Spark RDD 操作和数据聚合笔记

1. Spark RDD 简介

Apache Spark 的 RDD(弹性分布式数据集)是用于并行处理的基石,能够容错且具有高吞吐量。

2. 环境配置

配置 Spark 需要设置 Python 环境和 Spark 环境:

  • 设置 Python 解释器路径。
  • 创建 Spark 配置对象。
  • 设置运行模式为本地模式,并指定应用程序名称。
  • 初始化 SparkContext,它是与 Spark 集群交互的入口。
3. 创建 RDD

使用 parallelize 方法将本地数据集转换为 RDD。

4. flatMap 方法
  • flatMap 接收一个函数,将每个元素转换为多个元素,适用于文本数据拆分。
5. 复杂数据处理:日志文件分析
  • 读取日志数据,提取用户ID和状态码。
  • 过滤状态码为200的记录,统计每个用户的成功访问次数。
6. 数据聚合:商品销售数据聚合
  • 解析销售记录,使用 reduceByKey 方法聚合每个商品的总销量。
7. 数据聚合方法

除了 reduceByKey,还有:

  • reduce
  • aggregate
  • fold
  • groupBy
  • groupByKey
  • combineByKey
  • aggregateByKey
  • collect
  • SQL 语句聚合
  • Pandas UDF
8. RDD 转换操作
  • mapflatMapfiltermapPartitionsunionsubtractdistinctsamplegroupByjoincogroupcartesianrepartitioncoalescepartitionByzipzipWithIndexkeysvaluesflatMapValuesmapValues
9. 数据分区和重组策略
  • 使用 repartitioncoalesce 调整分区数。
  • 结合 partitionBy 使用自定义分区器。
  • 考虑数据本地性减少网络传输。
  • 使用 mapPartitions 处理整个分区的数据。
  • 使用 broadcast 广播小数据集。
  • 对数据排序减少 Shuffle。
  • 使用检查点保存应用程序状态。
  • 调整配置参数控制 Shuffle 操作的分区数。
  • 使用 DataFrames/Datasets API 优化。
  • 使用 Spark UI 监控和调优。
  • 选择高效的数据源和格式。
10. reduceByKeyaggregateByKey 区别
  • reduceByKey 适用于简单聚合操作。
  • aggregateByKey 提供高度自定义的聚合逻辑。
11. 示例代码

提供了 flatMap、日志文件分析、商品销售数据聚合的代码示例。

总结

本笔记详细介绍了 Spark RDD 的操作,包括环境配置、创建 RDD、使用 flatMap 和其他转换操作,以及数据聚合方法。还包括了复杂数据处理的示例,如日志文件分析和商品销售数据聚合,以及如何有效进行数据分区和重组操作的策略。通过这些知识点和示例,可以高效地处理和分析大规模数据集,优化 Spark 作业的性能和资源利用率。在实际应用中,根据数据特性和作业需求选择合适的方法和策略至关重要。

相关推荐
zyq~36 分钟前
【论文阅读笔记】模型的相似性
论文阅读·笔记
chxin140161 小时前
PyTorch - Tensor 学习笔记
pytorch·笔记
christine-rr2 小时前
【25软考网工笔记】第二章 数据通信基础(2) 信道延迟计算
网络·笔记·网络工程师·软考
满怀10152 小时前
【Python进阶】列表:全面解析与实战指南
python·算法
Debug_TheWorld3 小时前
Spark rdd算子解析与实践
spark
踢足球的程序员·3 小时前
OpenGL学习笔记(几何着色器、实例化、抗锯齿)
笔记·学习·图形渲染
小小菜鸟,可笑可笑3 小时前
Python 注释进阶之Google风格
开发语言·python
upp3 小时前
[bug]langchain agent报错Invalid Format: Missing ‘Action Input:‘ after ‘Action:‘
javascript·python·langchain·bug
小技与小术3 小时前
代码随想录算法训练营day4(链表)
数据结构·python·算法·链表
前端开发张小七3 小时前
每日一练:4.有效的括号
前端·python