第G2周:人脸图像生成(DCGAN)

基础任务

  1. 学习DCGAN的基本原理
  2. 了解DCGAN与GAN的区别
  3. 绘制DCGAN网络结构图
  4. 学习DCGAN代码,并跑通代码

一、前期准备

1、导入第三方库

python 复制代码
import torch, random, os
import torch.nn as nn
import torch.nn.parallel
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from IPython.display import HTML

manualSeed =999
print('Random Seed:',manualSeed)
random.seed(manualSeed)
torch.manual_seed(manualSeed)
torch.use_deterministic_algorithms(True)
  1. 定义超参数
python 复制代码
# 设置超参数
dataroot = "F:/365data/G2/"
batch_size = 128
image_size = 64
nz = 100
ngf = 64
ndf = 64
num_epochs = 50
lr = 0.0002
beta1 = 0.5

3、导入数据

python 复制代码
# 设置数据集,并用matplotlib展示一些图片
dataset = dset.ImageFolder(root=dataroot,
                           transform=transforms.Compose([
                               transforms.Resize(image_size),
                               transforms.CenterCrop(image_size),#中心裁剪
                               transforms.ToTensor(),
                               transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))
                           ]))
dataloader = torch.utils.data.DataLoader(dataset,
                                         batch_size=batch_size,
                                         shuffle=True,
                                         num_workers=5)
device = torch.device('cuda:0' if (torch.cuda.is_available()) else 'cpu')
print('使用的设备是:',device)

real_batch = next(iter(dataloader))
plt.figure(figsize=(8,8))
plt.axis('off')
plt.title('Training Images')
plt.imshow(np.transpose(vutils.make_grid(real_batch[0].to(device)[:24],
                                         padding=2,
                                         normalize=True).cpu(),(1,2,0)))

三、定义模型

1、初始化权重

python 复制代码
# 自定义权重初始化函数,作用于netG和netD
def weights_init(m):
    # 获取当前层的类名
    classname = m.__class__.__name__
    # 如果类名中包含'Conv',即当前层是卷积层
    if classname.find('Conv') != -1:
        # 使用正态分布初始化权重数据,均值为0,标准差为0.02
        nn.init.normal_(m.weight.data,0.0,0.02)
    # 如果类名中包含'BatchNorm',即当前层是批归一化层
    elif classname.find('BatchNorm') != -1:
        # 使用正态分布初始化权重数据,均值为1,标准差为0.02
        nn.init.normal_(m.weight.data,1.0,0.02)
        # 使用常数初始化偏置项数据,值为0
        nn.init.constant_(m.bias.data,0)

2、定义生成器

python 复制代码
# 定义生成器
class Generator(nn.Module):
    def __init__(self):
        super(Generator,self).__init__()
        self.main = nn.Sequential(
            # 输入为Z,经过一个转置卷积层
            nn.ConvTranspose2d(nz,ngf*8,4,1,0,bias=False),
            nn.BatchNorm2d(ngf*8),
            nn.ReLU(True),
            # 输出尺寸:(ngf*8) x 4 x 4
            nn.ConvTranspose2d(ngf*8,ngf*4,4,2,1,bias=False),
            nn.BatchNorm2d(ngf*4),
            nn.ReLU(True),
            # 输出尺寸:(ngf*4) x 8 x 8
            nn.ConvTranspose2d(ngf*4,ngf*2,4,2,1,bias=False),
            nn.BatchNorm2d(ngf*2),
            nn.ReLU(True),
            # 输出尺寸:(ngf*2) x 16 x 16
            nn.ConvTranspose2d(ngf*2,ngf,4,2,1,bias=False),
            nn.BatchNorm2d(ngf),
            nn.ReLU(True),
            # 输出尺寸:(ngf) x 32 x 32
            nn.ConvTranspose2d(ngf,3,4,2,1,bias=False),
            nn.Tanh()
            # 输出尺寸:3 x 64 x 64
        )
    def forward(self,input):
        return self.main(input)
python 复制代码
# 创建生成器
netG = Generator().to(device)
# 使用'weights_init'函数对所有权重进行随机初始化,
# 平均值(mean)设置为0,标准差(stdev)设置为0.02.
netG.apply(weights_init)
# 打印生成器
print(netG)

3、定义判别器

python 复制代码
# 定义判别器
class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator,self).__init__()

        # 定义判别器的主要结构,使用Sequential容器将多个层按顺序组合在一起
        self.main = nn.Sequential(
            # 输入尺寸:3 x 64 x 64
            nn.Conv2d(3,ndf,4,2,1,bias=False),
            nn.LeakyReLU(0.2,inplace=True),
            # 输出尺寸:(ndf) x 32 x 32
            nn.Conv2d(ndf,ndf*2,4,2,1,bias=False),
            nn.BatchNorm2d(ndf*2),
            nn.LeakyReLU(0.2,inplace=True),
            # 输出尺寸:(ndf*2) x 16 x 16
            nn.Conv2d(ndf*2,ndf*4,4,2,1,bias=False),
            nn.BatchNorm2d(ndf*4),
            nn.LeakyReLU(0.2,inplace=True),
            # 输出尺寸:(ndf*4) x 8 x 8
            nn.Conv2d(ndf*4,ndf*8,4,2,1,bias=False),
            nn.BatchNorm2d(ndf*8),
            nn.LeakyReLU(0.2,inplace=True),
            # 输出尺寸:(ndf*8) x 4 x 4
            nn.Conv2d(ndf*8,1,4,1,0,bias=False),
            nn.Sigmoid()
        )
    def forward(self,input):
        return self.main(input)
python 复制代码
# 创建判别器
netD = Discriminator().to(device)
# 使用'weights_init'函数对所有权重进行随机初始化,
# 平均值(mean)设置为0,标准差(stdev)设置为0.2
netD.apply(weights_init)
# 打印判别器
print(netD)

四、训练模型

1、定义训练参数

python 复制代码
# 初始化二进制交叉熵损失函数
criterion = nn.BCELoss()

# 创建用于可视化生成器进程的潜在向量批次
fixed_noise = torch.randn(64,nz,1,1,device=device)

real_label = 1.
fake_label = 0.

# 设置Adam优化器
optimizerD = optim.Adam(netD.parameters(),lr=lr,betas=(beta1,0.999))
optimizerG = optim.Adam(netG.parameters(),lr=lr,betas=(beta1,0.999))

2、训练模型

python 复制代码
img_list = [] # 用于保存生成器生成的图片
G_losses = [] # 用于保存生成器的损失
D_losses = [] # 用于保存判别器的损失
iters = 0 # 迭代次数

print('Starting Training Loop...')
for epoch in range(num_epochs):
    # 对于dataloader中的每个batch
    for i, data in enumerate(dataloader,0):

        ############################
        # (1) 更新判别器网络:最大化 log(D(x)) + log(1-D(G(z)))
        ###########################
        ## 训练真实数据
        netD.zero_grad()
        # 准备真实数据
        real_cpu = data[0].to(device)
        b_size = real_cpu.size(0)
        label = torch.full((b_size,), real_label, dtype=torch.float,device=device) # 创建真实标签
        # 通过判别器前向传播真实数据
        output = netD(real_cpu).view(-1)
        # 计算真实数据的损失
        errD_real = criterion(output,label)
        errD_real.backward()
        D_x = output.mean().item()

        ## 训练生成数据
        # 准备生成数据
        noise = torch.randn(b_size,nz,1,1,device=device)
        # 通过生成器生成数据
        fake = netG(noise)
        label.fill_(fake_label)
        # 通过判别器前向传播生成数据
        output = netD(fake.detach()).view(-1)
        # 计算生成数据的损失
        errD_fake = criterion(output,label)
        errD_fake.backward()
        D_G_z1 = output.mean().item()
        # 将真实数据和生成数据的损失相加
        errD = errD_real + errD_fake
        # 更新判别器参数
        optimizerD.step()

        ############################
        # (2) 更新生成器网络:最大化 log(D(G(z)))
        ###########################
        netG.zero_grad()
        label.fill_(real_label) # 为真实标签填充1
        # 通过判别器前向传播生成数据
        output = netD(fake).view(-1)
        # 计算生成数据的损失
        errG = criterion(output,label)
        # 更新生成器参数
        errG.backward()
        D_G_z2 = output.mean().item()
        optimizerG.step()

        # 输出训练统计信息
        if i % 400 == 0:
            print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f'
                  % (epoch, num_epochs, i, len(dataloader),
                     errD.item(), errG.item(), D_x, D_G_z1, D_G_z2))
        
        # 保存损失以便后续绘图
        G_losses.append(errG.item())
        D_losses.append(errD.item())

        # 通过固定噪声生成的图片来跟踪生成器的训练进度
        if (iters % 500 == 0) or ((epoch == num_epochs-1) and (i == len(dataloader)-1)):
            with torch.no_grad():
                fake = netG(fixed_noise).detach().cpu()
            img_list.append(vutils.make_grid(fake,padding=2,normalize=True))
        
        iters += 1
python 复制代码
Starting Training Loop...
[0/50][0/36]	Loss_D: 1.7508	Loss_G: 5.3002	D(x): 0.5574	D(G(z)): 0.5731 / 0.0074
[1/50][0/36]	Loss_D: 0.0362	Loss_G: 14.2664	D(x): 0.9773	D(G(z)): 0.0000 / 0.0000
[2/50][0/36]	Loss_D: 0.2026	Loss_G: 16.0342	D(x): 0.9112	D(G(z)): 0.0001 / 0.0000
[3/50][0/36]	Loss_D: 2.0525	Loss_G: 15.8344	D(x): 0.9709	D(G(z)): 0.7586 / 0.0000
[4/50][0/36]	Loss_D: 0.6356	Loss_G: 8.1305	D(x): 0.9236	D(G(z)): 0.3685 / 0.0009
[5/50][0/36]	Loss_D: 0.6821	Loss_G: 5.9364	D(x): 0.6237	D(G(z)): 0.0144 / 0.0069
[6/50][0/36]	Loss_D: 1.2046	Loss_G: 7.3426	D(x): 0.7934	D(G(z)): 0.5032 / 0.0014
[7/50][0/36]	Loss_D: 0.3649	Loss_G: 2.4782	D(x): 0.8240	D(G(z)): 0.0923 / 0.1542
[8/50][0/36]	Loss_D: 0.4195	Loss_G: 3.9613	D(x): 0.7799	D(G(z)): 0.0813 / 0.0324
[9/50][0/36]	Loss_D: 0.4080	Loss_G: 3.5926	D(x): 0.7544	D(G(z)): 0.0522 / 0.0381
[10/50][0/36]	Loss_D: 0.5388	Loss_G: 3.2718	D(x): 0.7955	D(G(z)): 0.1924 / 0.0625
[11/50][0/36]	Loss_D: 0.5069	Loss_G: 4.6123	D(x): 0.8644	D(G(z)): 0.2365 / 0.0201
[12/50][0/36]	Loss_D: 0.3624	Loss_G: 6.0753	D(x): 0.9865	D(G(z)): 0.2575 / 0.0056
[13/50][0/36]	Loss_D: 0.5918	Loss_G: 7.9663	D(x): 0.9450	D(G(z)): 0.3553 / 0.0015
[14/50][0/36]	Loss_D: 0.7028	Loss_G: 2.9400	D(x): 0.6269	D(G(z)): 0.0732 / 0.0965
[15/50][0/36]	Loss_D: 0.5989	Loss_G: 7.1686	D(x): 0.9460	D(G(z)): 0.3633 / 0.0016
[16/50][0/36]	Loss_D: 0.4842	Loss_G: 3.3526	D(x): 0.8576	D(G(z)): 0.1826 / 0.0679
[17/50][0/36]	Loss_D: 0.5359	Loss_G: 3.9497	D(x): 0.7646	D(G(z)): 0.1681 / 0.0320
[18/50][0/36]	Loss_D: 0.5714	Loss_G: 3.7671	D(x): 0.6718	D(G(z)): 0.0380 / 0.0435
[19/50][0/36]	Loss_D: 0.9133	Loss_G: 9.8651	D(x): 0.9621	D(G(z)): 0.5022 / 0.0003
[20/50][0/36]	Loss_D: 0.3539	Loss_G: 4.9887	D(x): 0.8234	D(G(z)): 0.0916 / 0.0127
[21/50][0/36]	Loss_D: 0.4090	Loss_G: 5.5089	D(x): 0.8455	D(G(z)): 0.1559 / 0.0068
[22/50][0/36]	Loss_D: 0.2700	Loss_G: 3.9109	D(x): 0.8547	D(G(z)): 0.0828 / 0.0305
[23/50][0/36]	Loss_D: 0.3666	Loss_G: 4.6487	D(x): 0.7987	D(G(z)): 0.0728 / 0.0169
[24/50][0/36]	Loss_D: 0.2080	Loss_G: 4.8461	D(x): 0.9183	D(G(z)): 0.0987 / 0.0132
[25/50][0/36]	Loss_D: 0.2491	Loss_G: 4.2578	D(x): 0.8474	D(G(z)): 0.0466 / 0.0284
[26/50][0/36]	Loss_D: 1.4370	Loss_G: 0.9225	D(x): 0.4111	D(G(z)): 0.0110 / 0.4851
[27/50][0/36]	Loss_D: 0.1547	Loss_G: 5.1120	D(x): 0.8961	D(G(z)): 0.0276 / 0.0129
[28/50][0/36]	Loss_D: 0.8567	Loss_G: 6.5480	D(x): 0.9418	D(G(z)): 0.4856 / 0.0033
[29/50][0/36]	Loss_D: 0.6378	Loss_G: 4.9804	D(x): 0.8771	D(G(z)): 0.3173 / 0.0184
[30/50][0/36]	Loss_D: 0.3486	Loss_G: 7.5059	D(x): 0.9430	D(G(z)): 0.1735 / 0.0045
[31/50][0/36]	Loss_D: 0.2469	Loss_G: 5.3903	D(x): 0.9004	D(G(z)): 0.1147 / 0.0071
[32/50][0/36]	Loss_D: 2.1140	Loss_G: 4.0502	D(x): 0.2535	D(G(z)): 0.0006 / 0.0527
[33/50][0/36]	Loss_D: 0.3779	Loss_G: 3.3574	D(x): 0.7900	D(G(z)): 0.0785 / 0.0629
[34/50][0/36]	Loss_D: 0.7457	Loss_G: 6.2508	D(x): 0.9369	D(G(z)): 0.4182 / 0.0050
[35/50][0/36]	Loss_D: 0.4192	Loss_G: 4.5746	D(x): 0.7539	D(G(z)): 0.0488 / 0.0286
[36/50][0/36]	Loss_D: 0.4010	Loss_G: 3.1014	D(x): 0.7694	D(G(z)): 0.0720 / 0.0785
[37/50][0/36]	Loss_D: 0.4838	Loss_G: 3.9613	D(x): 0.8002	D(G(z)): 0.1559 / 0.0388
[38/50][0/36]	Loss_D: 0.6112	Loss_G: 3.6062	D(x): 0.6384	D(G(z)): 0.0287 / 0.0572
[39/50][0/36]	Loss_D: 0.5417	Loss_G: 3.0678	D(x): 0.7755	D(G(z)): 0.1755 / 0.0730
[40/50][0/36]	Loss_D: 0.5360	Loss_G: 3.0343	D(x): 0.7394	D(G(z)): 0.1202 / 0.0796
[41/50][0/36]	Loss_D: 0.3049	Loss_G: 5.8082	D(x): 0.7885	D(G(z)): 0.0089 / 0.0091
[42/50][0/36]	Loss_D: 0.3132	Loss_G: 3.4717	D(x): 0.8981	D(G(z)): 0.1557 / 0.0584
[43/50][0/36]	Loss_D: 0.2647	Loss_G: 5.5635	D(x): 0.9601	D(G(z)): 0.1828 / 0.0060
[44/50][0/36]	Loss_D: 0.5790	Loss_G: 4.6106	D(x): 0.9657	D(G(z)): 0.3423 / 0.0241
[45/50][0/36]	Loss_D: 0.3232	Loss_G: 3.9199	D(x): 0.8089	D(G(z)): 0.0699 / 0.0371
[46/50][0/36]	Loss_D: 0.4083	Loss_G: 4.3659	D(x): 0.8922	D(G(z)): 0.2183 / 0.0195
[47/50][0/36]	Loss_D: 0.5366	Loss_G: 5.3078	D(x): 0.9345	D(G(z)): 0.3024 / 0.0120
[48/50][0/36]	Loss_D: 0.3728	Loss_G: 3.7532	D(x): 0.8676	D(G(z)): 0.1756 / 0.0430
[49/50][0/36]	Loss_D: 0.8418	Loss_G: 1.9751	D(x): 0.5530	D(G(z)): 0.0795 / 0.2058

3、可视化

python 复制代码
# 可视化
plt.figure(figsize=(10,5))
plt.title('Generator and Discriminator Loss During Training')
plt.plot(G_losses,label='G')
plt.plot(D_losses,label='D')
plt.xlabel('iterations')
plt.ylabel('Loss')
plt.legend()
plt.show()
python 复制代码
fig = plt.figure(figsize=(8,8))

plt.axis('off')

ims = [[plt.imshow(np.transpose(i,(1,2,0)),animated=True)] for i in img_list]

ani = animation.ArtistAnimation(fig,ims,interval=1000,repeat_delay=1000,blit=True)

HTML(ani.to_jshtml())
python 复制代码
# 从数据加载器中获取一批真实图像
real_batch = next(iter(dataloader))

# 将真实图像可视化
plt.figure(figsize=(15,15))
plt.subplot(1,2,1)
plt.axis('off')
plt.title('Real Images')
plt.imshow(np.transpose(vutils.make_grid(real_batch[0].to(device)[:64],padding=5,normalize=True).cpu(),(1,2,0)))

# 绘制上一个时期生成的假图像
plt.subplot(1,2,2)
plt.axis('off')
plt.title('Fake Images')
plt.imshow(np.transpose(img_list[-1],(1,2,0)))
plt.show()

五、总结

  • DCGAN与GAN的区别是,前者的生成器中使用了反卷积操作,它能放大特征图,从而改变尺寸。
  • 而判别器中则使用卷积步长取代空间池化。
  • 经过训练,生成的图像已经有部分接近真实图像了。
相关推荐
大千AI助手1 天前
生成对抗网络(GAN):深度学习领域的革命性突破
人工智能·深度学习·生成对抗网络·gan·生成模型·ian goodfellow·对抗训练
青云交9 天前
Java 大视界 -- Java 大数据在智能安防人脸识别系统中的活体检测与防伪技术应用
java·大数据·生成对抗网络·人脸识别·智能安防·防伪技术·活体测试
钮钴禄·爱因斯晨11 天前
AIGC浪潮下,风靡全球的Mcp到底是什么?一文讲懂,技术小白都知道!!
开发语言·人工智能·深度学习·神经网络·生成对抗网络·aigc
天下弈星~14 天前
GANs生成对抗网络生成手写数字的Pytorch实现
人工智能·pytorch·深度学习·神经网络·生成对抗网络·gans
合作小小程序员小小店15 天前
SDN安全开发环境中常见的框架,工具,第三方库,mininet常见指令介绍
python·安全·生成对抗网络·网络安全·网络攻击模型
努力还债的学术吗喽15 天前
2021 IEEE【论文精读】用GAN让音频隐写术骗过AI检测器 - 对抗深度学习的音频信息隐藏
人工智能·深度学习·生成对抗网络·密码学·音频·gan·隐写
ytttr8731 个月前
5G毫米波射频前端设计:从GaN功放到混合信号集成方案
前端·5g·生成对抗网络
啊哈哈哈哈哈啊哈哈1 个月前
G9打卡——ACGAN
python·生成对抗网络·gan
go54631584651 个月前
离散扩散模型在数独问题上的复现与应用
线性代数·算法·yolo·生成对抗网络·矩阵
go54631584651 个月前
基于YOLOP与GAN的图像修复与防御系统设计与实现
人工智能·深度学习·神经网络·机器学习·生成对抗网络·矩阵