生成对抗网络(GAN)损失函数解读

GAN损失函数的形式:

以下是对每个部分的解读:

1. ⁡, ​
  • :这个部分表示生成器(Generator)G的目标是最小化损失函数。

  • :判别器(Discriminator)D的目标是最大化损失函数。

  • GAN的训练过程是一个博弈过程:生成器与判别器对抗训练。生成器试图生成越来越真实的数据,而判别器试图分辨生成的数据和真实数据.

2.
  • :表示对真实数据的期望,真实数据来自数据分布

  • :判别器给出的判别结果是一个表示输入数据为真实数据的概率值。判别器的目标是正确识别真实数据,因此其目标是使得真实数据的接近1,的值会更大,从而增加损失函数的值。

    • 这部分损失函数的作用是惩罚判别器对于真实数据的错误判别,要求判别器更好地识别真实数据。
3.
  • :表示对噪声的期望,噪声来自潜在空间

  • :是生成器生成的样本,输入的是噪声

  • :判别器对生成器生成的样本的判别结果,表示生成样本为真实数据的概率。

  • :表示生成样本为假数据的概率,判别器希望能够识别出生成的数据为假数据,生成器希望生成的数据能够"欺骗"判别器,使得生成样本看起来像真实数据。因此,生成器的目标是最大化,即希望生成的假数据接近0,而判别器的目标是最小化这一值。

总结:
  • 判别器的目标是最大化损失函数,意味着它要尽力将真实数据推向1,将生成数据推向0,从而使其能够区分真实和生成数据。

  • 生成器的目标是最小化损失函数,意味着它希望生成的数据能够"欺骗"判别器,使得接近1,从而使得生成的数据看起来像真实数据。

通过这种对抗性训练,生成器和判别器互相竞争,最终生成器能够生成越来越真实的样本。

相关推荐
EkihzniY3 小时前
AI+OCR:解锁数字化新视界
人工智能·ocr
东哥说-MES|从入门到精通3 小时前
GenAI-生成式人工智能在工业制造中的应用
大数据·人工智能·智能制造·数字化·数字化转型·mes
铅笔侠_小龙虾4 小时前
深度学习理论推导--梯度下降法
人工智能·深度学习
kaikaile19954 小时前
基于遗传算法的车辆路径问题(VRP)解决方案MATLAB实现
开发语言·人工智能·matlab
lpfasd1234 小时前
第1章_LangGraph的背景与设计哲学
人工智能
Aevget4 小时前
界面组件Kendo UI for React 2025 Q3亮点 - AI功能全面提升
人工智能·react.js·ui·界面控件·kendo ui·ui开发
桜吹雪5 小时前
LangChain.js/DeepAgents可观测性
javascript·人工智能
&&Citrus5 小时前
【杂谈】SNNU公共计算平台:深度学习服务器配置与远程开发指北
服务器·人工智能·vscode·深度学习·snnu
乌恩大侠5 小时前
Spark 机器上修改缓冲区大小
人工智能·usrp
STLearner5 小时前
AI论文速读 | U-Cast:学习高维时间序列预测的层次结构
大数据·论文阅读·人工智能·深度学习·学习·机器学习·数据挖掘