基于 TensorFlow 2 的 WGAN来生成表格数据、数值数据和序列数据。 WGAN生成对抗网络。代码仅供参考

WGAN生成对抗网络

基于python tensorflow2以下框架,环境应该如何自己配置?

表格数据、数值数据,序列数据生成

里面是一个标准函数的数据,读取自己数据需要自己改。可以随意替换纬度,需要自己手动改.

如何配置环境并编写一个基于 TensorFlow 2 的 WGAN(Wasserstein Generative Adversarial Network)来生成表格数据、数值数据和序列数据。我们将使用标准函数,并提供一个模板,你可以根据自己的数据进行调整。

代码仅供参考

环境配置

首先,确保你的 Python 环境已经安装了必要的库。你可以使用以下命令来安装所需的库:

bash 复制代码
pip install tensorflow numpy pandas matplotlib scikit-learn

代码实现

我们将编写一个通用的 WGAN 模型,可以处理不同类型的数值数据。这个模型将包括以下几个部分:

  1. 数据加载和预处理
  2. 构建 WGAN 模型
  3. 训练 WGAN 模型
  4. 生成数据
1. 数据加载和预处理

我们将编写一个函数来加载和预处理数据。这里我们假设你有一个 CSV 文件作为输入数据。

python 复制代码
import os
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler

def load_and_preprocess_data(file_path):
    # Load data from CSV file
    data = pd.read_csv(file_path)
    
    # Separate features and labels if needed
    X = data.values
    
    # Normalize the data
    scaler = StandardScaler()
    X_scaled = scaler.fit_transform(X)
    
    return X_scaled, scaler

# Example usage
data_path = 'your_data.csv'
X_scaled, scaler = load_and_preprocess_data(data_path)
2. 构建 WGAN 模型

我们将定义生成器和判别器网络。

python 复制代码
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Dense, Reshape, Flatten
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.constraints import Constraint

class ClipConstraint(Constraint):
    def __init__(self, clip_value):
        self.clip_value = clip_value

    def __call__(self, weights):
        return tf.clip_by_value(weights, -self.clip_value, self.clip_value)

def build_generator(latent_dim, output_shape):
    model = Sequential()
    model.add(Dense(128, activation='relu', input_dim=latent_dim))
    model.add(Dense(256, activation='relu'))
    model.add(Dense(512, activation='relu'))
    model.add(Dense(output_shape, activation='tanh'))
    return model

def build_discriminator(input_shape):
    model = Sequential()
    model.add(Flatten(input_shape=input_shape))
    model.add(Dense(512, activation='relu', kernel_constraint=ClipConstraint(0.01)))
    model.add(Dense(256, activation='relu', kernel_constraint=ClipConstraint(0.01)))
    model.add(Dense(1))
    return model

def wasserstein_loss(y_true, y_pred):
    return tf.reduce_mean(y_true * y_pred)

def gradient_penalty_loss(y_true, y_pred, averaged_samples, weight):
    gradients = tf.gradients(y_pred, averaged_samples)[0]
    gradients_sqr = tf.square(gradients)
    gradient_penalty = tf.reduce_mean(tf.reduce_sum(gradients_sqr, axis=np.arange(1, len(gradients_sqr.shape))))
    return weight * gradient_penalty

# Define parameters
latent_dim = 100
output_shape = X_scaled.shape[1]

generator = build_generator(latent_dim, output_shape)
discriminator = build_discriminator((output_shape,))

discriminator.compile(loss=wasserstein_loss, optimizer=Adam(lr=0.0001, beta_1=0.5), metrics=['accuracy'])

discriminator.trainable = False

gan_input = Input(shape=(latent_dim,))
generated_signal = generator(gan_input)
validity = discriminator(generated_signal)

combined = Model(gan_input, validity)
combined.compile(loss=wasserstein_loss, optimizer=Adam(lr=0.0001, beta_1=0.5))
3. 训练 WGAN 模型

我们将编写训练循环来训练 WGAN 模型。

python 复制代码
def train(generator, discriminator, combined, X_train, latent_dim, epochs=10000, batch_size=64, sample_interval=1000):
    valid = -np.ones((batch_size, 1))
    fake = np.ones((batch_size, 1))
    g_loss_list = []
    d_loss_list = []

    for epoch in range(epochs):
        idx = np.random.randint(0, X_train.shape[0], batch_size)
        real_signals = X_train[idx]

        noise = np.random.normal(0, 1, (batch_size, latent_dim))
        generated_signals = generator.predict(noise)

        d_loss_real = discriminator.train_on_batch(real_signals, valid)
        d_loss_fake = discriminator.train_on_batch(generated_signals, fake)

        alpha = np.random.random(size=(batch_size, 1, X_train.shape[1]))
        interpolated_signals = (alpha * real_signals) + ((1 - alpha) * generated_signals)
        
        validity_interpolated = discriminator.predict(interpolated_signals)
        gp_loss = gradient_penalty_loss(None, validity_interpolated, interpolated_signals, 10)
        d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)[0] + gp_loss
        
        noise = np.random.normal(0, 1, (batch_size, latent_dim))
        g_loss = combined.train_on_batch(noise, valid)

        if epoch % sample_interval == 0:
            print(f"{epoch} [D loss: {d_loss}] [G loss: {g_loss}]")
            g_loss_list.append(g_loss)
            d_loss_list.append(d_loss)
            
    return g_loss_list, d_loss_list

# Train the model
g_loss_list, d_loss_list = train(generator, discriminator, combined, X_scaled, latent_dim)
4. 生成数据

我们将编写一个函数来生成新的数据样本。

python 复制代码
def generate_data(generator, latent_dim, num_samples, scaler):
    noise = np.random.normal(0, 1, (num_samples, latent_dim))
    generated_signals = generator.predict(noise)
    generated_signals_rescaled = scaler.inverse_transform(generated_signals)
    return generated_signals_rescaled

# Generate new data samples
num_samples = 1000
generated_data = generate_data(generator, latent_dim, num_samples, scaler)

# Save generated data to a CSV file
pd.DataFrame(generated_data).to_csv('generated_data.csv', index=False)

完整代码

以下是完整的代码示例,包含了从数据加载、模型构建、训练到生成数据的所有步骤。

运行脚本

在终端中运行以下命令来执行整个流程:

bash 复制代码
python main.py

总结

以上文档包含了从数据加载、模型构建、训练到生成数据的所有步骤。希望这些详细的信息和代码能够帮助你顺利实施和优化你的 WGAN 模型。

自定义说明

  1. 数据文件路径 : 修改 data_path 变量以指向你的数据文件。
  2. 数据维度 : 根据你的数据维度调整 latent_dimoutput_shape 参数。
  3. 训练参数 : 根据需要调整 epochs, batch_size, 和 sample_interval 等超参数。
  4. 生成样本数量 : 修改 num_samples 变量以生成所需数量的数据样本。

通过这些步骤,可以灵活地使用 WGAN 生成各种类型的数值数据。

相关推荐
问问计算机8 小时前
2.Neo4j是什么?
neo4j
羊羊小栈8 小时前
基于知识图谱(Neo4j)和大语言模型(LLM)的图检索增强(GraphRAG)的台风灾害知识问答系统(vue+flask+AI算法)
人工智能·毕业设计·知识图谱·创业创新·neo4j·毕设·大作业
FserSuN8 小时前
GraphRAG 与 Neo4j 社区版:能力边界与适用场景学习总结
学习·neo4j
java1234_小锋1 天前
TensorFlow2 Python深度学习 - 使用Dropout层解决过拟合问题
python·深度学习·tensorflow·tensorflow2
java1234_小锋1 天前
TensorFlow2 Python深度学习 - 卷积神经网络(CNN)介绍
python·深度学习·tensorflow·tensorflow2
java1234_小锋1 天前
TensorFlow2 Python深度学习 - 循环神经网络(RNN)- 简介
python·深度学习·tensorflow·tensorflow2
盼小辉丶1 天前
TensorFlow深度学习实战——节点分类
深度学习·分类·tensorflow·图神经网络
m0_678693332 天前
深度学习笔记39-CGAN|生成手势图像 | 可控制生成(Pytorch)
深度学习·学习·生成对抗网络
掘金安东尼2 天前
深入 Neo4j:从图数据库原理到企业知识引擎的实践指南
数据库·neo4j
熊文豪2 天前
Windows安装Neo4j保姆级教程(图文详解)
neo4j