开源模型应用落地-LangChain实用小技巧-ChatPromptTemplate的partial方法(一)

一、前言

在当今的自然语言处理领域,LangChain 框架因其强大的功能和灵活性而备受关注。掌握一些实用的小技巧,能够让您在使用 LangChain 框架时更加得心应手,从而更高效地开发出优质的自然语言处理应用。


二、术语

**2.1.**LangChain

是一个全方位的、基于大语言模型这种预测能力的应用开发工具。LangChain的预构建链功能,就像乐高积木一样,无论你是新手还是经验丰富的开发者,都可以选择适合自己的部分快速构建项目。对于希望进行更深入工作的开发者,LangChain 提供的模块化组件则允许你根据自己的需求定制和创建应用中的功能链条。

LangChain本质上就是对各种大模型提供的API的套壳,是为了方便我们使用这些 API,搭建起来的一些框架、模块和接口。

LangChain的主要特性:

1.可以连接多种数据源,比如网页链接、本地PDF文件、向量数据库等

2.允许语言模型与其环境交互

3.封装了Model I/O(输入/输出)、Retrieval(检索器)、Memory(记忆)、Agents(决策和调度)等核心组件

4.可以使用链的方式组装这些组件,以便最好地完成特定用例。

5.围绕以上设计原则,LangChain解决了现在开发人工智能应用的一些切实痛点。

**2.2.**ChatPromptTemplate

是 LangChain 框架中用于创建聊天模型提示的类。

2.3.partial方法

用于创建一个部分格式化的提示模板。它允许在创建提示模板时只传入部分变量值,而不需要等待所有变量值都准备好。


三、前提条件

3.1. 基础环境

  1. 操作系统:不限

3.2. 安装虚拟环境

bash 复制代码
conda create --name langchain python=3.10
conda activate langchain
pip install langchain langchain-openai langchain-community

四、技术实现

4.1.partial方法示例

partial方法用于创建一个部分格式化的提示模板。它允许在创建提示模板时,先传入部分变量的值,而不需要等待所有变量值都准备好。这样可以在链式处理中,当某些变量值先获取到,而其他变量值稍后才可用时,使用部分格式化的提示模板继续进行处理。

python 复制代码
import os

from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI

os.environ["OPENAI_API_KEY"] = "sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

if __name__ == '__main__':
    chat = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.1, max_tokens=256)
    template = '''
        {region}有哪些重点的{advantage}?
        '''
    prompt_template = ChatPromptTemplate.from_template(template)
    prompt_template = prompt_template.partial(region="广东",)
    print(prompt_template)

    chain = prompt_template | chat | StrOutputParser()
    print(chain.invoke({"advantage":"名牌大学"}))

调用结果:

4.2.format方法示例

format方法则用于将提示模板中的占位符替换为具体的变量值,以得到完整的提示字符串。它需要传入所有未被部分格式化的变量的值。

python 复制代码
import os

from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI

os.environ["OPENAI_API_KEY"] = "sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

if __name__ == '__main__':

    chat = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.1, max_tokens=256)
    template = '''
           {region}有哪些重点的{advantage}?
           '''
    prompt_template = ChatPromptTemplate.from_template(template)
    prompt = prompt_template.format(region="广东",advantage="名牌大学")
    print(prompt)
    print(chat.invoke(prompt).content)

调用结果:

4.3.partial+format方法示例

python 复制代码
import os

from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI

os.environ["OPENAI_API_KEY"] = "sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

if __name__ == '__main__':

    chat = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.1, max_tokens=256)
    template = '''
              {region}有哪些重点的{advantage}?
              '''
    prompt_template = ChatPromptTemplate.from_template(template)
    prompt_template = prompt_template.partial(region="广东")
    prompt = prompt_template.format(advantage="名牌大学")
    print(prompt)

    print(chat.invoke(prompt).content)

调用结果:


五、附带说明

5.1. 总结

partial方法用于部分地预先设置提示模板中的变量,而format方法用于最终完成提示模板的格式化,得到完整的提示内容。

相关推荐
yLDeveloper9 小时前
从模型评估、梯度难题到科学初始化:一步步解析深度学习的训练问题
深度学习
Coder_Boy_9 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
2401_836235869 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活
njsgcs9 小时前
llm使用 AgentScope-Tuner 通过 RL 训练 FrozenLake 智能体
人工智能·深度学习
NEXT0610 小时前
AI 应用工程化实战:使用 LangChain.js 编排 DeepSeek 复杂工作流
前端·javascript·langchain
2的n次方_10 小时前
CANN ascend-transformer-boost 架构解析:融合注意力算子管线、长序列分块策略与图引擎协同机制
深度学习·架构·transformer
人工智能培训10 小时前
具身智能视觉、触觉、力觉、听觉等信息如何实时对齐与融合?
人工智能·深度学习·大模型·transformer·企业数字化转型·具身智能
pp起床12 小时前
Gen_AI 补充内容 Logit Lens 和 Patchscopes
人工智能·深度学习·机器学习
孤舟晓月12 小时前
Langchain 1.0后astream_events事件类型及生命周期简析
langchain·大模型·langgraph
阿杰学AI13 小时前
AI核心知识91——大语言模型之 Transformer 架构(简洁且通俗易懂版)
人工智能·深度学习·ai·语言模型·自然语言处理·aigc·transformer