【数据分析详细教学】全球气温变迁:一个多世纪的数据分析

全球气温变迁:一个多世纪的数据分析

1. 数据集选择与获取

数据可以从NASA的GISTEMP数据集获取,通常提供的格式有TXT和CSV。我们假设数据是以CSV格式提供。

2. 数据预处理

使用Python的pandas库读取数据并进行预处理。

python 复制代码
import pandas as pd

# 加载数据
data_path = 'path/to/your/dataset.csv'
df = pd.read_csv(data_path)

# 检查前几行数据
print(df.head())

# 检查数据类型
print(df.dtypes)

# 处理缺失值
df.dropna(inplace=True)

# 数据转换:将日期转换为日期时间格式
df['date'] = pd.to_datetime(df['year'].astype(str), format='%Y') # 假设'year'是年份列
3. 探索性数据分析(EDA)

使用pandas进行统计描述,并利用matplotlibseaborn进行数据可视化。

python 复制代码
import matplotlib.pyplot as plt
import seaborn as sns

# 统计描述
print(df.describe())

# 时间序列图
plt.figure(figsize=(14, 7))
plt.plot(df['date'], df['temperature_anomaly']) # 假设'temperature_anomaly'是温度异常列
plt.title('Global Temperature Anomaly Over Time')
plt.xlabel('Year')
plt.ylabel('Temperature Anomaly (°C)')
plt.show()

# 箱形图:显示每十年的温度异常分布
df['decade'] = (df['year'] // 10) * 10
sns.boxplot(x='decade', y='temperature_anomaly', data=df)
plt.title('Temperature Anomaly by Decade')
plt.show()
4. 数据可视化

进一步的可视化可能包括热力图或地理分布图,这需要额外的数据处理和地理坐标信息。

python 复制代码
# 地理分布图(假设你有经纬度数据)
# 这里只是示意,具体的绘图代码会更复杂
plt.figure(figsize=(12, 8))
sns.heatmap(df.pivot_table(index='latitude', columns='longitude', values='temperature_anomaly'), cmap='coolwarm')
plt.title('Heatmap of Temperature Anomaly')
plt.show()
5. 报告撰写

报告撰写不涉及代码,但你应当在报告中包括上述代码的输出结果,如图表和统计分析。

6. 存储与分享

使用Git将代码和数据存储在GitHub或其他版本控制平台上。

bash 复制代码
# 初始化git仓库
git init
git add .
git commit -m "Initial commit"

# 将项目推送到GitHub
git remote add origin https://github.com/yourusername/yourproject.git
git push -u origin master

请记得在你的代码中替换path/to/your/dataset.csvyeartemperature_anomalylatitudelongitude等占位符为实际数据集中的列名。同时,确保你已经安装了pandas, matplotlib, 和 seaborn库。如果没有安装,可以使用pip install pandas matplotlib seaborn命令安装。

相关推荐
wktomo6 小时前
数据挖掘比赛baseline参考
人工智能·数据挖掘
TG_yunshuguoji9 小时前
亚马逊云代理:利用亚马逊云进行大规模数据分析与处理的最佳实践
服务器·数据挖掘·数据分析·云计算·aws
B站_计算机毕业设计之家9 小时前
机器学习:基于大数据的基金数据分析可视化系统 股票数据 金融数据 股价 Django框架 大数据技术(源码) ✅
大数据·python·金融·数据分析·股票·etf·基金
平谷一勺20 小时前
数据清洗-缺失值的处理
python·数据分析
CSTechEi21 小时前
【SPIE/EI/Scopus检索】2026 年第三届数据挖掘与自然语言处理国际会议 (DMNLP 2026)
人工智能·自然语言处理·数据挖掘
gddkxc1 天前
AI CRM中的数据分析:悟空AI CRM如何帮助企业优化运营
人工智能·信息可视化·数据分析
Dev7z1 天前
阿尔茨海默病早期症状影像分类数据集
人工智能·分类·数据挖掘
派可数据BI可视化1 天前
商业智能BI 浅谈数据孤岛和数据分析的发展
大数据·数据库·数据仓库·信息可视化·数据挖掘·数据分析
kida_yuan1 天前
【Java】基于 Tabula 的 PDF 合并单元格内容提取
java·数据分析
api_180079054601 天前
性能优化揭秘:将淘宝商品 API 响应时间从 500ms 优化到 50ms 的技术实践
大数据·数据库·性能优化·数据挖掘