《Java初阶数据结构》----6.<优先级队列之PriorityQueue底层:堆>

前言

大家好,我目前在学习java。之前也学了一段时间,但是没有发布博客。时间过的真的很快。我会利用好这个暑假,来复习之前学过的内容,并整理好之前写过的博客进行发布。如果博客中有错误或者没有读懂的地方。热烈欢迎大家在评论区进行讨论!!!

喜欢我文章的兄弟姐妹们可以点赞,收藏和评论我的文章。喜欢我的兄弟姐妹们以及也想复习一遍java知识的兄弟姐妹们可以关注我呦,我会持续更新滴,
望支持!!!!!!一起加油呀!!!!
语言只是工具,不能决定你好不好找工作,决定你好不好找工作的是你的能力!!!!!

学历本科及以上就够用了!!!!!!!!!!!!!!!!!!!!!!


本篇博客主要讲解Java基础语法中的

堆的概念及实现、堆的性质、堆的创建、堆的插入与删除、堆的应用。

下一篇文章我们会重点将优先级队列


一、优先级队列

1.1什么是优先级队列

前面我们了解过队列 是一种先进先出(FIFO)的数据结构。但有些情况下,操作的数据可能带有优先级,一般出队列时,可能需要优先级高的元素先出队列。此时普通队列就不适用了。因此我们引入优先级队列。

数据结构应该提供两个最基本的操作**,一个是返回最高优先级对象** ,**一个是添加新的对象。**这种数据结构就是优先级队列(Priority Queue)。

1.2优先级队列的实现

JDK1.8中的PriorityQueue底层使用了 这种数据结构

堆:实际就是在完全二叉树的基础上进行了一些调整。

二、堆

2.1堆的概念

如果有一个关键码的集合K = {k0,k1, k2,...,kn-1},把它的所有元素按完全二叉树的顺序存储方式存储在一 个一维数组中,并满足:Ki <= K2i+1 且 Ki <= K2i+2 ( Ki >= K2i+1 且 Ki >= K2i+2) i = 0,1,2...,则称为 小堆 (或大堆)。将根节点最大的堆叫做最大堆大根堆 ,根节点最小的堆叫做最小堆小根堆

2.2堆的性质

堆的性质:

  • 堆中某个节点的值总是不大于或不小于其父节点的值;
  • 堆总是一棵完全二叉树。

2.3 堆的存储方式

从堆的概念可知,堆是一棵完全二叉树,因此可以层序的规则采用顺序的方式来高效存储,

注意:对于非完全二叉树,则不适合使用顺序方式进行存储,因为为了能够还原二叉树,空间中必须要存储空节 点,就会导致空间利用率比较低。

将元素存储到数组中后,可以根据二叉树章节的性质5对树进行还原。假设i为节点在数组中的下标,则有:

  • 如果i为0,则i表示的节点为根节点,否则i节点的双亲节点为 (i - 1)/2
  • 如果2 * i + 1 小于节点个数,则节点i的左孩子下标为2 * i + 1,否则没有左孩子
  • 如果2 * i + 2 小于节点个数,则节点i的右孩子下标为2 * i + 2,否则没有右孩子

2.4 堆的创建

2.4.1 堆向下调整

根节点的左右子树满足堆的特性(创建堆)

对于集合{ 27,15,19,18,28,34,65,49,25,37 }中的数据,如果将其创建成堆呢?

仔细观察上图后发现:根节点的左右子树已经完全满足堆的性质,因此只需将根节点向下调整好即可。

向下过程(以小堆为例):

  1. 让parent标记需要调整的节点,child标记parent的左孩子(注意:parent如果有孩子一定先是有左孩子)

  2. 如果parent的左孩子存在,即:child < size, 进行以下操作,直到parent的左孩子不存在

parent右孩子是否存在,存在找到左右孩子中最小的孩子,让child进行标

将parent与较小的孩子child比较,

如果:

  • parent小于较小的孩子child,调整结束
  • 否则:交换parent与较小的孩子child,交换完成之后,parent中大的元素向下移动,可能导致子 树不满足对的性质,因此需要继续向下调整,即parent = child;child = parent*2+1; 然后继续2。

代码实现

java 复制代码
public void shiftDown(int[] array, int parent) {
    // child先标记parent的左孩子,因为parent可能右左没有右
    int child = 2 * parent + 1;
    int size = array.length;
    
    while (child < size) {
        
        // 如果右孩子存在,找到左右孩子中较小的孩子,用child进行标记
        if(child+1 < size && array[child+1] < array[child]){
            child += 1;
       }
        
        // 如果双亲比其最小的孩子还小,说明该结构已经满足堆的特性了
        if (array[parent] <= array[child]) {
            break;
       }else{
            // 将双亲与较小的孩子交换
       int t = array[parent];
       array[parent] = array[child];
       array[child] = t;
            
            // parent中大的元素往下移动,可能会造成子树不满足堆的性质,因此需要继续向下调整
            parent = child;
            child = parent * 2 + 1;
       }
   }
}

注意:在调整以parent为根的二叉树时,必须要满足parent的左子树和右子树已经是堆了才可以向下调整。 时间复杂度分析:

最坏的情况即图示的情况,从根一路比较到叶子,比较的次数为完全二叉树的高度,即时间复杂度为O(logN)

2.4.2根节点的左右子树不满足堆的特性(创建堆)

那对于普通的序列{ 1,5,3,8,7,6 },即根节点的左右子树不满足堆的特性,又该如何调整呢?

代码示例

java 复制代码
public static void createHeap(int[] array) {
    // 找倒数第一个非叶子节点,从该节点位置开始往前一直到根节点,遇到一个节点,应用向下调整
    int root = ((array.length-2)>>1);
    for (; root >= 0; root--) {
        shiftDown(array, root);
   }
}

2.4.3 建堆的时间复杂度

因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的就是 近似值,多几个节点不影响最终结果):

因此:建堆的时间复杂度为O(N)。

2.5 堆的插入与删除

2.5.1 堆的插入

堆的插入总共需要两个步骤:

  1. 先将元素放入到底层空间中(注意:空间不够时需要扩容)

  2. 将最后新插入的节点向上调整,直到满足堆的性质

代码实现

java 复制代码
public void shiftUp(int child) {
    // 找到child的双亲
     int parent = (child - 1) / 2;
    
    while (child > 0) {
        // 如果双亲比孩子大,parent满足堆的性质,调整结束
        if (array[parent] > array[child]) {
            break;
       }
        else{
            // 将双亲与孩子节点进行交换 
            int t = array[parent];
            array[parent] = array[child];
            array[child] = t;
        
            // 小的元素向下移动,可能到值子树不满足对的性质,因此需要继续向上调增
            child = parent;
            parent = (child - 1) / 1;
       }
   }
}

2.5.2 堆的删除

注意:堆的删除一定删除的是堆顶元素。具体如下:

  1. 将堆顶元素对堆中最后一个元素交换

  2. 将堆中有效数据个数减少一个

  3. 对堆顶元素进行向下调整

2.5用堆模拟优先级队列

java 复制代码
public class MyPriorityQueue {
    // 演示作用,不再考虑扩容部分的代码
    private int[] array = new int[100];
    private int size = 0;
    
    public void offer(int e) {
        array[size++] = e;
        shiftUp(size - 1);
   }
    
    public int poll() {
        int oldValue = array[0];
        array[0] = array[--size];
        shiftDown(0);
        return oldValue;
   }
    
    public int peek() {
        return array[0];
   }
}

三、堆的应用

3.1 PriorityQueue的实现

用堆作为底层结构封装优先级队列

3.2 堆排序

堆排序即利用堆的思想来进行排序,总共分为两个步骤:

①建堆

升序:建大堆

降序:建小堆

②利用堆删除思想来进行排序

建堆和堆删除中都用到了向下调整,因此掌握了向下调整,就可以完成堆排序。

相关推荐
readmancynn8 分钟前
二分基本实现
数据结构·算法
Bruce小鬼11 分钟前
QT文件基本操作
开发语言·qt
Bucai_不才12 分钟前
【数据结构】树——链式存储二叉树的基础
数据结构·二叉树
2202_7544215417 分钟前
生成MPSOC以及ZYNQ的启动文件BOOT.BIN的小软件
java·linux·开发语言
盼海18 分钟前
排序算法(四)--快速排序
数据结构·算法·排序算法
蓝染-惣右介19 分钟前
【MyBatisPlus·最新教程】包含多个改造案例,常用注解、条件构造器、代码生成、静态工具、类型处理器、分页插件、自动填充字段
java·数据库·tomcat·mybatis
小林想被监督学习20 分钟前
idea怎么打开两个窗口,运行两个项目
java·ide·intellij-idea
HoneyMoose22 分钟前
IDEA 2024.3 版本更新主要功能介绍
java·ide·intellij-idea
我只会发热24 分钟前
Java SE 与 Java EE:基础与进阶的探索之旅
java·开发语言·java-ee
是老余25 分钟前
本地可运行,jar包运行错误【解决实例】:通过IDEA的maven package打包多模块项目
java·maven·intellij-idea·jar