Llama开源代码详细解读(1):工具包

本人纯纯新手,因此通过Llama开源代码希望能对LLM有个大致认识。

工具包介绍

python 复制代码
from transformers.utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    is_flash_attn_available,
    logging,
    replace_return_docstrings,
)
from transformers.models.llama.configuration_llama import LlamaConfig

python 复制代码
# coding=utf-8
  • utf-8是用于表示unicode字符的编码方式,是互联网标准编码之一。utf-8用1-4个字节表示每个字符。单字节的字符,第一位设为0,后面7位为该符号的Unicode码,对于英文字母,unicode与ASCII编码相同。对于n字节的字符,第一个字节的前n位均设为1,第n+1位设为0,后面字节的前两位均设置为10,剩下的没有提及的,就是该字符的Unicode码。

python 复制代码
import math
  • math工具包提供了对于数学函数的访问,具体在接下来用到再说。

python 复制代码
from typing import List, Optional, Tuple, Union

这四个模块是类型提示模块,允许开发者在代码中指定变量、函数参数和返回值的预期类型,从而提高代码的可读性,使得代码更具自文档性。


python 复制代码
import torch
import torch.nn.functional as F
  • torch.nn.functional是torch中的一个子模块,提供了一组函数式的接口,用于实现各种神经网络操作。具体等到用到的时候再看。

python 复制代码
import torch.utils.checkpoint
  • torch.utils.checkpoint是torch中的一个训练模块,使用内存节约技术,略微增加计算量,减少内存消耗。基本思想是:前向传播的过程中不保存中间激活值,在反向传播的时候重新计算这些激活值。
python 复制代码
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
  • torch.nn提供了多种损失函数。
  • BCEWithLogitsLoss 是用于二分类任务的损失函数,将二分类交叉熵损失和sigmoid函数结合在了一起,从而提高数值稳定性。
  • CrossEntropyLoss是用于多分类任务的损失函数。
  • MSELoss是用于回归任务的损失函数,它计算预测值和真实值之间的均方误差。

python 复制代码
import pdb
  • pdb是python内置的调试器,可以逐行执行代码,设置断点,检查变量值等。
python 复制代码
from transformers.activations import ACT2FN
  • ACT2FN是hugging_face中的一个字典,负责将激活函数的名称映射到相应函数。

python 复制代码
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
  • transformers.modeling_outputs定义了一些常见的模型输出类,封装了模型的输出,并提供了更加快捷的访问方式,以上三个用于不同的模型和任务。
  • BaseModelOutputWithPast通常用于基础模型(如transformer)的输出,包含主要的输出(如最后一个隐藏层状态)和额外的一些可选信息(例如,过去的隐藏状态)。
  • CausalLMOutputWithPast通常用于因果语言模型(如GPT)
  • SequenceClassifierOutputWithPast通常用于序列分类模型(如BERT),包含分类logits(分类任务中未经过处理的原始分数)和过去的隐藏状态。

python 复制代码
from transformers.modeling_utils import PreTrainedModel
  • hugging_face用于加载预训练模型的库。

python 复制代码
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
  • ALL_LAYERNORM_LAYERS包含了所有可能的LayerNorm层(归一化层)的类型。

python 复制代码
from transformers.utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    is_flash_attn_available,
    logging,
    replace_return_docstrings,
)
  • add_start_docstrings为类的文档字符串提供通用的开头文档。
  • add_start_docstrings_to_model_forward为模型的forward方法提供开头的文档字符串。
  • is_flash_attn_available检查Flash Attention是否可用,FA是一种优化注意力机制实现,能显著加快transformer模型的训练与推理速度。
  • logging用于在使用transformer开发时生成和管理日志消息。
  • replace_return_docstrings用于替换函数或者方法的返回值文档字符串。

python 复制代码
from transformers.models.llama.configuration_llama import LlamaConfig
  • LlamaConfig用于配置Llama参数。
相关推荐
倔强的石头10610 小时前
昇腾NPU运行Llama模型全攻略:环境搭建、性能测试、问题解决一网打尽
大模型·llama·昇腾
码农阿豪2 天前
在昇腾NPU上跑Llama 2模型:一次完整的性能测试与实战通关指南
llama
Qiuner2 天前
快速入门LangChain4j Ollama本地部署与阿里百炼请求大模型
语言模型·langchain·nlp·llama·ollama
辣大辣条2 天前
LLAMA-Factory Qwen3-1.7b模型微调
llama
我狸才不是赔钱货3 天前
AI大模型“战国策”:主流LLM平台简单介绍
c++·人工智能·程序人生·github·llama
临街的小孩4 天前
Docker 容器访问宿主机 Ollama 服务配置教程
llama·argflow
鸿蒙小白龙5 天前
OpenHarmony平台大语言模型本地推理:llama深度适配与部署技术详解
人工智能·语言模型·harmonyos·鸿蒙·鸿蒙系统·llama·open harmony
AI大模型7 天前
轻松搞定百个大模型微调!LLaMA-Factory:你的AI模型量产神器
程序员·llm·llama
fly五行11 天前
大模型基础入门与 RAG 实战:从理论到 llama-index 项目搭建(有具体代码示例)
python·ai·llama·llamaindex
德育处主任Pro15 天前
前端玩转大模型,DeepSeek-R1 蒸馏 Llama 模型的 Bedrock 部署
前端·llama