LlaMA_Factory实战微调VL大模型

VL微调数据格式文件样例如下

一:微调数据集准备

1、制作微调数据集

首先找到data文件夹下方的mllm_demo.json,确认微调VL模型时的数据格式模板,然后按照模板,制作对应的指令微调数据集。

2、确认微调模型认知

打开identity.json文件,修改模型初步认知,确认微调后模型的名称和开发者,如下。

3、进入dataset_info.json,添加数据集,修改文件夹名称和对应标注json文件名即可

复制代码
"****_vl_data(图片文件夹名称)": {
    "file_name": "****_vl_data.json(对应的json文件名称)",
    "formatting": "sharegpt",
    "columns": {
      "messages": "messages",
      "images": "images"
    },
    "tags": {
      "role_tag": "role",
      "content_tag": "content",
      "user_tag": "user",
      "assistant_tag": "assistant"
    }
  }

二:启动训练

1、先下载模型文件

2、web端启动命令

复制代码
llamafactory-cli webui

配置参数

启动训练后使用显存大小:50924MiB≈49.7G(这个有大佬知道正常吗,7B参数按照这个训练要这么大的显存?),共143条数据,15Epoch所用时间为:40min

训练曲线如下所示

但是感觉没怎么收敛啊,准备在加几轮训练一下

修改参数:参数部分可参照该链接,说的很详细

https://blog.csdn.net/qq_62223405/article/details/149500255?fromshare=blogdetail\&sharetype=blogdetail\&sharerId=149500255\&sharerefer=PC\&sharesource=weixin_42225889\&sharefrom=from_link

在15个epoch时模型训练稳定

中断训练,然后导出模型文件进行测试,完成训练

二:增加到一共300条数据,使用3B进行训练

配置如下

占用显存大小为:32364MiB≈31.6G

用时40分钟达到稳定,,epoch=12左右,中断测试

相关推荐
玄同76518 分钟前
Llama.cpp 全实战指南:跨平台部署本地大模型的零门槛方案
人工智能·语言模型·自然语言处理·langchain·交互·llama·ollama
zhangfeng11337 小时前
大模型微调主要框架 Firefly vs LLaMA Factory 全方位对比表
人工智能·语言模型·开源·llama
zhangfeng11331 天前
LLaMA Factory 完全支自定义词库(包括自定义微调数据集、自定义领域词汇/词表)
人工智能·llama
小毅&Nora1 天前
【人工智能】【大模型】从厨房到实验室:解密LLaMA架构如何重塑大模型世界
人工智能·架构·llama
kimi-2222 天前
LLaMA Factory: 一站式大模型高效微调平台
llama
码界奇点4 天前
基于Wails框架的Ollama模型桌面管理系统设计与实现
go·毕业设计·llama·源代码管理
独隅4 天前
Ollama for macOS 完全指南:零配置本地运行 Llama、DeepSeek 等大模型,私享安全高效的 AI 能力
安全·macos·llama
skywalk81635 天前
使用llama.cpp和ollama推理LFM2.5-1.2B模型
llama·ollama·lfm2.5-1.2b
GatiArt雷5 天前
基于LLaMA 3微调的行业知识库问答系统搭建与实践
llama
wangqiaowq5 天前
llama.cpp + llama-server 的安装部署验证
运维·服务器·llama