LlaMA_Factory实战微调VL大模型

VL微调数据格式文件样例如下

一:微调数据集准备

1、制作微调数据集

首先找到data文件夹下方的mllm_demo.json,确认微调VL模型时的数据格式模板,然后按照模板,制作对应的指令微调数据集。

2、确认微调模型认知

打开identity.json文件,修改模型初步认知,确认微调后模型的名称和开发者,如下。

3、进入dataset_info.json,添加数据集,修改文件夹名称和对应标注json文件名即可

复制代码
"****_vl_data(图片文件夹名称)": {
    "file_name": "****_vl_data.json(对应的json文件名称)",
    "formatting": "sharegpt",
    "columns": {
      "messages": "messages",
      "images": "images"
    },
    "tags": {
      "role_tag": "role",
      "content_tag": "content",
      "user_tag": "user",
      "assistant_tag": "assistant"
    }
  }

二:启动训练

1、先下载模型文件

2、web端启动命令

复制代码
llamafactory-cli webui

配置参数

启动训练后使用显存大小:50924MiB≈49.7G(这个有大佬知道正常吗,7B参数按照这个训练要这么大的显存?),共143条数据,15Epoch所用时间为:40min

训练曲线如下所示

但是感觉没怎么收敛啊,准备在加几轮训练一下

修改参数:参数部分可参照该链接,说的很详细

https://blog.csdn.net/qq_62223405/article/details/149500255?fromshare=blogdetail\&sharetype=blogdetail\&sharerId=149500255\&sharerefer=PC\&sharesource=weixin_42225889\&sharefrom=from_link

在15个epoch时模型训练稳定

中断训练,然后导出模型文件进行测试,完成训练

二:增加到一共300条数据,使用3B进行训练

配置如下

占用显存大小为:32364MiB≈31.6G

用时40分钟达到稳定,,epoch=12左右,中断测试

相关推荐
爱分享的飘哥7 天前
第四十六章:AI的“瞬时记忆”与“高效聚焦”:llama.cpp的KV Cache与Attention机制
llama·llama.cpp·kv cache·attention优化·llm cpu推理·量化attention·gguf推理
psyq8 天前
LLaMA Factory 角色扮演模型微调实践记录
人工智能·llama
liliangcsdn16 天前
mac测试ollama llamaindex
数据仓库·人工智能·prompt·llama
茫茫人海一粒沙16 天前
使用 LLaMA 3 8B 微调一个 Reward Model:从入门到实践
llama
liliangcsdn18 天前
mac llama_index agent算术式子计算示例
人工智能·python·macos·llama
许愿与你永世安宁19 天前
RAG(检索增强生成)里的文档管理
数据库·人工智能·gpt·oracle·llama·rag
许愿与你永世安宁23 天前
基于Llama的RAG 3种模型配置方法
人工智能·python·自然语言处理·json·github·llama·faiss
至善迎风23 天前
本地部署 Kimi K2 全指南(llama.cpp、vLLM、Docker 三法)
docker·容器·llama·kimi
阿斯卡码23 天前
安装 llama-cpp-python 的CPU和GPU方法
开发语言·python·llama