基于llama.cpp的量化版reranker模型调用示例

CPU平台transformers版reranker响应速度慢,这里尝试量化版模型,期望提高响应速度。

ollama目前(25.8.22)还不支持reranker的endpoint,只能考虑其他复杂点的方案,比如llama.cpp。

这里使用llama.cpp,量化bge-reranker-v2-m3模型。

1 llama.cpp安装

centos7系统基础库glibc比较老,llama.cpp直接编译安装存在障碍,所以这里采用docker方案。

1)镜像下载

假设docker已经安装,安装过程参考如下链接

centos7 安装ragflow示例_ragflow能部署在centos上吗-CSDN博客

llama.cpp docker镜像如下

ghcr.io/ggml-org/llama.cpp:server - 镜像下载 | ghcr.io

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/ggml-org/llama.cpp:server

docker tag swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/ggml-org/llama.cpp:server ghcr.io/ggml-org/llama.cpp:server

2)镜像启动

llama.cpp docker文档如下

https://github.com/ggml-org/llama.cpp/blob/master/docs/docker.md

docker启动命令如下,/path/to/models就是存放具体下载模型的地方

nohup docker run -v /path/to/models:/models -p 8000:8000 ghcr.io/ggml-org/llama.cpp:server -m /models/bge-reranker-v2-m3-Q2_K.gguf --reranking --port 8000 --host 0.0.0.0 -n 8192 > run.log &

这里启动的是bge-reranker-v2-m3-Q2_K.gguf,采用llama.cpp的Q2量化,来源如下

https://huggingface.co/gpustack/bge-reranker-v2-m3-GGUF/tree/main

具体量化操作过程参考如下链接。

在mac m1基于llama.cpp运行deepseek_macos m1运行gguf文件-CSDN博客

由于是reranking,启动时提供--reranking选项。

2 reranker 模型测试

1)reranking任务说明

所下所示,documents是初筛找出的可能与query相关的文档。

reranking是更精准判断query与documents中每个doc的相关程度,具体为relevance_score。

"query": "明天天气怎么样",

"documents": [

"今天天气晴朗,我的心情美美哒",

"小明和小红一起上学",

"我们来试一试吧",

"我们一起学猫叫",

"我和Faker五五开",

"明天预计下雨,不能出去玩了"

]

2)reranking调用示例

模型调用示例如下,llama.cpp兼容openai接口,采用如下openai式的http api去请求。

curl --location 'http://localhost:8000/v1/reranking' \

--header 'Authorization: Bearer $OPENAI_API_KEY' \

--header 'Content-Type: application/json' \

--data '{

"query": "明天天气怎么样",

"documents": [

"今天天气晴朗,我的心情美美哒",

"小明和小红一起上学",

"我们来试一试吧",

"我们一起学猫叫",

"我和Faker五五开",

"明天预计下雨,不能出去玩了"

],

"model": "text-embedding-ada-002",

"encoding_format": "float"

}'

输出如下

{

"model": "text-embedding-ada-002",

"object": "list",

"usage": {

"prompt_tokens": 92,

"total_tokens": 92

},

"results": [

{

"index": 0,

"relevance_score": -1.7882604598999023

},

{

"index": 1,

"relevance_score": -6.9131317138671875

},

{

"index": 2,

"relevance_score": -7.27742862701416

},

{

"index": 3,

"relevance_score": -9.136366844177246

},

{

"index": 4,

"relevance_score": -6.689809322357178

},

{

"index": 5,

"relevance_score": -1.3041083812713623

}

]

}

openai sdk版本调用参照如下链接

https://blog.csdn.net/liliang199/article/details/150111535

reference


llama.cpp docker 文档

https://github.com/ggml-org/llama.cpp/blob/master/docs/docker.md

bge-reranker-v2-m3-GGUF

https://huggingface.co/gpustack/bge-reranker-v2-m3-GGUF/tree/main

llama.cpp docker image

https://docker.aityp.com/image/ghcr.io/ggml-org/llama.cpp:server

第二弹 llama.cpp控制参数

https://blog.csdn.net/joedan0104/article/details/143034253

如何用OpenAI SDK调用Ollama LLM

https://blog.csdn.net/liliang199/article/details/150111535

centos7 安装docker + ragflow示例

https://blog.csdn.net/liliang199/article/details/150067330

RAG初筛方案实例验证-多种BM25方案

https://blog.csdn.net/liliang199/article/details/150604949

开源向量模型-精排bge reranker示例

https://blog.csdn.net/liliang199/article/details/150342360

在mac m1基于llama.cpp运行deepseek

https://blog.csdn.net/liliang199/article/details/149246699

量化版本的bge-reranker-v2-m3

https://ollama.com/qllama/bge-reranker-v2-m3

BGE FlagEmbedding

https://github.com/FlagOpen/FlagEmbedding

ollama支持Reranker重排序大模型啦

https://www.bilibili.com/opus/1091251147250860036

ollama reranker模型怎么被dify调用呢?

https://linux.do/t/topic/427704

Reranking documents with Ollama and Qwen3 Reranker model --- in Go

https://medium.com/@rosgluk/reranking-documents-with-ollama-and-qwen3-reranker-model-in-go-6dc9c2fb5f0b

LLM-Llama\]在 MAC M1上体验Llama.cpp和通义千问Qwen 1.5-7B [https://juejin.cn/post/7371365854012293131](https://juejin.cn/post/7371365854012293131 "https://juejin.cn/post/7371365854012293131")

相关推荐
人工智能训练师1 小时前
Ubuntu22.04如何安装新版本的Node.js和npm
linux·运维·前端·人工智能·ubuntu·npm·node.js
大数据CLUB2 小时前
基于spark的澳洲光伏发电站选址预测
大数据·hadoop·分布式·数据分析·spark·数据开发
cxr8282 小时前
SPARC方法论在Claude Code基于规则驱动开发中的应用
人工智能·驱动开发·claude·智能体
研梦非凡2 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
幂简集成3 小时前
Realtime API 语音代理端到端接入全流程教程(含 Demo,延迟 280ms)
人工智能·个人开发
龙腾-虎跃3 小时前
FreeSWITCH FunASR语音识别模块
人工智能·语音识别·xcode
智慧地球(AI·Earth)3 小时前
给AI配一台手机+电脑?智谱AutoGLM上线!
人工智能·智能手机·电脑
Godspeed Zhao3 小时前
自动驾驶中的传感器技术46——Radar(7)
人工智能·机器学习·自动驾驶
limengshi1383923 小时前
机器学习面试:请介绍几种常用的学习率衰减方式
人工智能·学习·机器学习
AKAMAI4 小时前
Sport Network 凭借 Akamai 实现卓越成就
人工智能·云原生·云计算