基于llama.cpp的量化版reranker模型调用示例

CPU平台transformers版reranker响应速度慢,这里尝试量化版模型,期望提高响应速度。

ollama目前(25.8.22)还不支持reranker的endpoint,只能考虑其他复杂点的方案,比如llama.cpp。

这里使用llama.cpp,量化bge-reranker-v2-m3模型。

1 llama.cpp安装

centos7系统基础库glibc比较老,llama.cpp直接编译安装存在障碍,所以这里采用docker方案。

1)镜像下载

假设docker已经安装,安装过程参考如下链接

centos7 安装ragflow示例_ragflow能部署在centos上吗-CSDN博客

llama.cpp docker镜像如下

ghcr.io/ggml-org/llama.cpp:server - 镜像下载 | ghcr.io

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/ggml-org/llama.cpp:server

docker tag swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/ggml-org/llama.cpp:server ghcr.io/ggml-org/llama.cpp:server

2)镜像启动

llama.cpp docker文档如下

https://github.com/ggml-org/llama.cpp/blob/master/docs/docker.md

docker启动命令如下,/path/to/models就是存放具体下载模型的地方

nohup docker run -v /path/to/models:/models -p 8000:8000 ghcr.io/ggml-org/llama.cpp:server -m /models/bge-reranker-v2-m3-Q2_K.gguf --reranking --port 8000 --host 0.0.0.0 -n 8192 > run.log &

这里启动的是bge-reranker-v2-m3-Q2_K.gguf,采用llama.cpp的Q2量化,来源如下

https://huggingface.co/gpustack/bge-reranker-v2-m3-GGUF/tree/main

具体量化操作过程参考如下链接。

在mac m1基于llama.cpp运行deepseek_macos m1运行gguf文件-CSDN博客

由于是reranking,启动时提供--reranking选项。

2 reranker 模型测试

1)reranking任务说明

所下所示,documents是初筛找出的可能与query相关的文档。

reranking是更精准判断query与documents中每个doc的相关程度,具体为relevance_score。

"query": "明天天气怎么样",

"documents": [

"今天天气晴朗,我的心情美美哒",

"小明和小红一起上学",

"我们来试一试吧",

"我们一起学猫叫",

"我和Faker五五开",

"明天预计下雨,不能出去玩了"

]

2)reranking调用示例

模型调用示例如下,llama.cpp兼容openai接口,采用如下openai式的http api去请求。

curl --location 'http://localhost:8000/v1/reranking' \

--header 'Authorization: Bearer $OPENAI_API_KEY' \

--header 'Content-Type: application/json' \

--data '{

"query": "明天天气怎么样",

"documents": [

"今天天气晴朗,我的心情美美哒",

"小明和小红一起上学",

"我们来试一试吧",

"我们一起学猫叫",

"我和Faker五五开",

"明天预计下雨,不能出去玩了"

],

"model": "text-embedding-ada-002",

"encoding_format": "float"

}'

输出如下

{

"model": "text-embedding-ada-002",

"object": "list",

"usage": {

"prompt_tokens": 92,

"total_tokens": 92

},

"results": [

{

"index": 0,

"relevance_score": -1.7882604598999023

},

{

"index": 1,

"relevance_score": -6.9131317138671875

},

{

"index": 2,

"relevance_score": -7.27742862701416

},

{

"index": 3,

"relevance_score": -9.136366844177246

},

{

"index": 4,

"relevance_score": -6.689809322357178

},

{

"index": 5,

"relevance_score": -1.3041083812713623

}

]

}

openai sdk版本调用参照如下链接

https://blog.csdn.net/liliang199/article/details/150111535

reference


llama.cpp docker 文档

https://github.com/ggml-org/llama.cpp/blob/master/docs/docker.md

bge-reranker-v2-m3-GGUF

https://huggingface.co/gpustack/bge-reranker-v2-m3-GGUF/tree/main

llama.cpp docker image

https://docker.aityp.com/image/ghcr.io/ggml-org/llama.cpp:server

第二弹 llama.cpp控制参数

https://blog.csdn.net/joedan0104/article/details/143034253

如何用OpenAI SDK调用Ollama LLM

https://blog.csdn.net/liliang199/article/details/150111535

centos7 安装docker + ragflow示例

https://blog.csdn.net/liliang199/article/details/150067330

RAG初筛方案实例验证-多种BM25方案

https://blog.csdn.net/liliang199/article/details/150604949

开源向量模型-精排bge reranker示例

https://blog.csdn.net/liliang199/article/details/150342360

在mac m1基于llama.cpp运行deepseek

https://blog.csdn.net/liliang199/article/details/149246699

量化版本的bge-reranker-v2-m3

https://ollama.com/qllama/bge-reranker-v2-m3

BGE FlagEmbedding

https://github.com/FlagOpen/FlagEmbedding

ollama支持Reranker重排序大模型啦

https://www.bilibili.com/opus/1091251147250860036

ollama reranker模型怎么被dify调用呢?

https://linux.do/t/topic/427704

Reranking documents with Ollama and Qwen3 Reranker model --- in Go

https://medium.com/@rosgluk/reranking-documents-with-ollama-and-qwen3-reranker-model-in-go-6dc9c2fb5f0b

LLM-Llama\]在 MAC M1上体验Llama.cpp和通义千问Qwen 1.5-7B [https://juejin.cn/post/7371365854012293131](https://juejin.cn/post/7371365854012293131 "https://juejin.cn/post/7371365854012293131")

相关推荐
computersciencer2 分钟前
机器学习入门:什么是机器学习
人工智能·机器学习
Java后端的Ai之路11 分钟前
【机器学习】- CatBoost模型参数详细说明
人工智能·机器学习·catboost·模型参数
java1234_小锋33 分钟前
AI蒸馏技术:让AI更智能、更高效
人工智能·ai·ai蒸馏
饼干哥哥39 分钟前
1 个人用AI编程开发的产品卖了8000万美金——Base44的增长策略全拆解
人工智能·ai编程
virtaitech42 分钟前
云平台一键部署【Step-1X-3D】3D生成界的Flux
人工智能·科技·ai·gpu·算力·云平台
简叙生活43 分钟前
CES2026吹响AI硬件集结号,RTC技术何以成为“隐形引擎”?
人工智能·实时音视频
Elastic 中国社区官方博客1 小时前
jina-embeddings-v3 现已在 Elastic Inference Service 上可用
大数据·人工智能·elasticsearch·搜索引擎·ai·jina
Delroy1 小时前
Vercel 凌晨突发:agent-browser 来了,减少 93% 上下文!AI 终于有了“操纵现实”的手! 🚀
人工智能·爬虫·机器学习
Elastic 中国社区官方博客1 小时前
使用 jina-embeddings-v3 和 Elasticsearch 进行多语言搜索
大数据·数据库·人工智能·elasticsearch·搜索引擎·全文检索·jina
百***78751 小时前
GLM-4.7深度实测:开源编码王者,Claude Opus 4.5平替方案全解析
人工智能·gpt