mac测试ollama llamaindex

LlamaIndexs 将大语言模型和外部数据连接在一起的工具。大模型prompt有一个长度限制,当外部知识的内容超过这个长度,无法同时将有效信息传递给大模型,因此就诞生了 LlamaIndex。

具体操作就是通过多轮对话的方式不断提纯外部数据,达到在有限的输入长度限制下,传达更多的信息给大模型。

本文在mac平台验证ollama llamaindex,假设ollama已安装,mac安装ollama安装参考

在mac m1基于ollama运行deepseek r1_m1 mac deepseek-r1-CSDN博客

1 llama-index运行环境搭建

环境向量搭建

conda create -n llama-index python=3.12

conda activte llama-index

pip install llama-index

chromadb依赖

pip install llama-index-llms-ollama

pip install llama-index-embeddings-ollama

pip install llama_index-vector_stores-chroma

开源向量存储

pip install chromadb

ollama embedding模型下载

由于mac本地计算能力有限,所以使用qwen3:1.7b小模型。

ollama pull yxl/m3e

ollama pull qwen3:1.7b

ollama list

2 向量本地化 & 自定义查询

以pdf文件"长安的荔枝- 马伯庸.pdf"为例(可以替换为其他PDF书籍),通过llama_index读取为documents,为减少计算量,取前10个子document。

docs/长安的荔枝- 马伯庸.pdf

documents向量本地目录为./chromadb_v0

rm -rf ./chromadb_v0

mkdir -p ./chromadb_v0

向量集合名称为"llama_index_test"

本地向量化代码如下

复制代码
import chromadb
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, get_response_synthesizer, Settings
from llama_index.llms.ollama import Ollama
from llama_index.embeddings.ollama import OllamaEmbedding
from llama_index.core.node_parser import SentenceSplitter
from llama_index.vector_stores.chroma import ChromaVectorStore
from llama_index.core import StorageContext


Settings.embed_model = OllamaEmbedding(model_name="yxl/m3e:latest")
Settings.llm = Ollama(model="qwen3:1.7b", request_timeout=360)

documents = SimpleDirectoryReader("docs").load_data()
documents = documents[:10]
print(f"documents: {len(documents)}")

db = chromadb.PersistentClient(path="./chromadb_v0")
chroma_collection = db.get_or_create_collection("llama_index_test")
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
storage_context = StorageContext.from_defaults(vector_store=vector_store)

index = VectorStoreIndex.from_documents(
    documents, storage_context=storage_context, transformations=[SentenceSplitter(chunk_size=256)]
)

print(index)

然后是自定义查询,prompt="李善德"

复制代码
import chromadb
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, get_response_synthesizer, Settings
from llama_index.vector_stores.chroma import ChromaVectorStore
from llama_index.core import StorageContext
from llama_index.llms.ollama import Ollama
from llama_index.embeddings.ollama import OllamaEmbedding
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core.query_engine import RetrieverQueryEngine

Settings.embed_model = OllamaEmbedding(model_name="yxl/m3e:latest")  
Settings.llm = Ollama(model="qwen3:1.7b", request_timeout=720)  

db = chromadb.PersistentClient(path="./chromadb_v1")
chroma_collection = db.get_or_create_collection("llama_index_test")
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
storage_context = StorageContext.from_defaults(vector_store=vector_store)

index = VectorStoreIndex.from_vector_store(
    vector_store, storage_context=storage_context
)

retriever = VectorIndexRetriever(
    index=index,
    similarity_top_k=5,  # 返回最相似的前 n 个文档片段
)

response_synthesizer = get_response_synthesizer()

query_engine = RetrieverQueryEngine(
    retriever=retriever,
    response_synthesizer=response_synthesizer,    
)

response = query_engine.query("李善德")
print(response)  # 输出查询结果

llama_index的回复如下。

<think>

</think>

李善德是《长安的荔枝》一书中的一位重要角色,他因在官场中表现出的忠诚与谨慎,而逐渐被世人所知。他曾在多个衙署任职,包括司农寺和上林署,负责处理各种政务事务。在一次重要的政务活动中,他被圣人指派为荔枝使,负责运输珍贵的荔枝,这一职位对他来说具有极大的意义。他的经历展现了他在官场中的沉稳与担当,也体现了他在复杂的政治环境中所展现出的智慧与忠诚。

可见,llamaindex,借助外部知识库chromadb,和向量检索,找到知识库中最相关内容,然后通过大模型将这些内容提纯为最终答案。

reference


ollama - qwen3:1.7b

https://www.ollama.com/library/qwen3:1.7b

Ollama LLM llamaindex

https://docs.llamaindex.ai/en/stable/examples/llm/ollama/

RAG+Agent 实战 llama-index+ollama 本地环境构建rag、agent

https://blog.csdn.net/yierbubu1212/article/details/142718139

相关推荐
刘大大Leo2 分钟前
GPT-5.3-Codex 炸了:第一个「自己造自己」的 AI 编程模型,到底意味着什么?
人工智能·gpt
小镇敲码人5 分钟前
剖析CANN框架中Samples仓库:从示例到实战的AI开发指南
c++·人工智能·python·华为·acl·cann
摘星编程13 分钟前
CANN ops-nn Pooling算子解读:CNN模型下采样与特征提取的核心
人工智能·神经网络·cnn
程序员清洒27 分钟前
CANN模型安全:从对抗防御到隐私保护的全栈安全实战
人工智能·深度学习·安全
island131431 分钟前
CANN ops-nn 算子库深度解析:神经网络计算引擎的底层架构、硬件映射与融合优化机制
人工智能·神经网络·架构
小白|35 分钟前
CANN与实时音视频AI:构建低延迟智能通信系统的全栈实践
人工智能·实时音视频
Kiyra35 分钟前
作为后端开发你不得不知的 AI 知识——Prompt(提示词)
人工智能·prompt
艾莉丝努力练剑38 分钟前
实时视频流处理:利用ops-cv构建高性能CV应用
人工智能·cann
程序猿追38 分钟前
深度解析CANN ops-nn仓库 神经网络算子的性能优化与实践
人工智能·神经网络·性能优化
User_芊芊君子42 分钟前
CANN_PTO_ISA虚拟指令集全解析打造跨平台高性能计算的抽象层
人工智能·深度学习·神经网络