基于主成分分析(PCA)的平面拟合(python)

1、原理介绍

主成分分析(PCA)可以用来从点云数据中找到最佳拟合平面。PCA 的基本思想是通过变换坐标系,使得数据在新坐标系下的方差最大。对于二维数据,这通常意味着找到数据的最大变异性方向;对于三维数据,PCA 可以找到两个最大的变异方向,这两个方向构成了最佳拟合平面。

2、推导过程

假设我们有一组三维点云数据 {Pi​},其中每个点 Pi​ 都可以用坐标 (xi​,yi​,zi​) 表示。我们想要找到一个平面,该平面能最好地拟合这些点,即找到一个平面方程 ax+by+cz+d=0,使得所有点到这个平面的距离平方和最小。

下面是 PCA 拟合点云平面的基本步骤:

3、测试代码

基于python、pycharm编写的源代码,下载链接:https://download.csdn.net/download/qq_32867925/89598297

随机生成一个在平面x+y-z-5=0上的点集,共1万点,利用pca拟合得到平面方程,再对平面进行可视化。

python 复制代码
numpt = 10000
points = []

for _ in range(numpt):
    x = random.randint(0, 500)
    y = random.randint(0, 500)
    z = 1 * x + 1 * y - 5  # 假设平面方程类型 x+y-z-5=0
    points.append((x,y,z))

points = np.array(points)

如下图所示,点使用红色进行渲染,拟合得到的平面用蓝色进行渲染。可以发现,拟合平面与点基本重合,估算平面方程正确。

相关推荐
咖啡の猫18 分钟前
Python的自述
开发语言·python
重启编程之路1 小时前
python 基础学习socket -TCP编程
网络·python·学习·tcp/ip
云和数据.ChenGuang2 小时前
pycharm怎么将背景换成白色
ide·python·pycharm
我的xiaodoujiao3 小时前
使用 Python 语言 从 0 到 1 搭建完整 Web UI自动化测试学习系列 25--数据驱动--参数化处理 Excel 文件 2
前端·python·学习·测试工具·ui·pytest
DO_Community3 小时前
基于AI Agent模板:快速生成 SQL 测试数据
人工智能·python·sql·ai·llm·ai编程
Q_Q5110082854 小时前
python+django/flask的宠物用品系统vue
spring boot·python·django·flask·node.js·php
hmbbcsm5 小时前
练习python题目小记(五)
开发语言·python
蓝桉~MLGT5 小时前
Python学习历程——文件
python·学习·策略模式
循环过三天5 小时前
7.5、Python-匿名函数lambda
笔记·python·学习