基于主成分分析(PCA)的平面拟合(python)

1、原理介绍

主成分分析(PCA)可以用来从点云数据中找到最佳拟合平面。PCA 的基本思想是通过变换坐标系,使得数据在新坐标系下的方差最大。对于二维数据,这通常意味着找到数据的最大变异性方向;对于三维数据,PCA 可以找到两个最大的变异方向,这两个方向构成了最佳拟合平面。

2、推导过程

假设我们有一组三维点云数据 {Pi​},其中每个点 Pi​ 都可以用坐标 (xi​,yi​,zi​) 表示。我们想要找到一个平面,该平面能最好地拟合这些点,即找到一个平面方程 ax+by+cz+d=0,使得所有点到这个平面的距离平方和最小。

下面是 PCA 拟合点云平面的基本步骤:

3、测试代码

基于python、pycharm编写的源代码,下载链接:https://download.csdn.net/download/qq_32867925/89598297

随机生成一个在平面x+y-z-5=0上的点集,共1万点,利用pca拟合得到平面方程,再对平面进行可视化。

python 复制代码
numpt = 10000
points = []

for _ in range(numpt):
    x = random.randint(0, 500)
    y = random.randint(0, 500)
    z = 1 * x + 1 * y - 5  # 假设平面方程类型 x+y-z-5=0
    points.append((x,y,z))

points = np.array(points)

如下图所示,点使用红色进行渲染,拟合得到的平面用蓝色进行渲染。可以发现,拟合平面与点基本重合,估算平面方程正确。

相关推荐
跟橙姐学代码1 小时前
学Python像学做人:从基础语法到人生哲理的成长之路
前端·python
Keying,,,,1 小时前
力扣hot100 | 矩阵 | 73. 矩阵置零、54. 螺旋矩阵、48. 旋转图像、240. 搜索二维矩阵 II
python·算法·leetcode·矩阵
桃源学社(接毕设)1 小时前
基于人工智能和物联网融合跌倒监控系统(LW+源码+讲解+部署)
人工智能·python·单片机·yolov8
yunhuibin2 小时前
pycharm2025导入anaconda创建的各个AI环境
人工智能·python
杨荧2 小时前
基于Python的电影评论数据分析系统 Python+Django+Vue.js
大数据·前端·vue.js·python
python-行者2 小时前
akamai鼠标轨迹
爬虫·python·计算机外设·akamai
R-G-B3 小时前
【P14 3-6 】OpenCV Python——视频加载、摄像头调用、视频基本信息获取(宽、高、帧率、总帧数)
python·opencv·视频加载·摄像头调用·获取视频基本信息·获取视频帧率·获取视频帧数
赵英英俊3 小时前
Python day46
python·深度学习·机器学习
weixin_307779135 小时前
AWS Lambda解压缩S3 ZIP文件流程
python·算法·云计算·aws
独行soc12 小时前
2025年渗透测试面试题总结-18(题目+回答)
android·python·科技·面试·职场和发展·渗透测试