基于主成分分析(PCA)的平面拟合(python)

1、原理介绍

主成分分析(PCA)可以用来从点云数据中找到最佳拟合平面。PCA 的基本思想是通过变换坐标系,使得数据在新坐标系下的方差最大。对于二维数据,这通常意味着找到数据的最大变异性方向;对于三维数据,PCA 可以找到两个最大的变异方向,这两个方向构成了最佳拟合平面。

2、推导过程

假设我们有一组三维点云数据 {Pi​},其中每个点 Pi​ 都可以用坐标 (xi​,yi​,zi​) 表示。我们想要找到一个平面,该平面能最好地拟合这些点,即找到一个平面方程 ax+by+cz+d=0,使得所有点到这个平面的距离平方和最小。

下面是 PCA 拟合点云平面的基本步骤:

3、测试代码

基于python、pycharm编写的源代码,下载链接:https://download.csdn.net/download/qq_32867925/89598297

随机生成一个在平面x+y-z-5=0上的点集,共1万点,利用pca拟合得到平面方程,再对平面进行可视化。

python 复制代码
numpt = 10000
points = []

for _ in range(numpt):
    x = random.randint(0, 500)
    y = random.randint(0, 500)
    z = 1 * x + 1 * y - 5  # 假设平面方程类型 x+y-z-5=0
    points.append((x,y,z))

points = np.array(points)

如下图所示,点使用红色进行渲染,拟合得到的平面用蓝色进行渲染。可以发现,拟合平面与点基本重合,估算平面方程正确。

相关推荐
网易独家音乐人Mike Zhou2 小时前
【卡尔曼滤波】数据预测Prediction观测器的理论推导及应用 C语言、Python实现(Kalman Filter)
c语言·python·单片机·物联网·算法·嵌入式·iot
安静读书2 小时前
Python解析视频FPS(帧率)、分辨率信息
python·opencv·音视频
小二·4 小时前
java基础面试题笔记(基础篇)
java·笔记·python
小喵要摸鱼5 小时前
Python 神经网络项目常用语法
python
一念之坤7 小时前
零基础学Python之数据结构 -- 01篇
数据结构·python
wxl7812277 小时前
如何使用本地大模型做数据分析
python·数据挖掘·数据分析·代码解释器
NoneCoder7 小时前
Python入门(12)--数据处理
开发语言·python
LKID体8 小时前
Python操作neo4j库py2neo使用(一)
python·oracle·neo4j
小尤笔记8 小时前
利用Python编写简单登录系统
开发语言·python·数据分析·python基础
FreedomLeo18 小时前
Python数据分析NumPy和pandas(四十、Python 中的建模库statsmodels 和 scikit-learn)
python·机器学习·数据分析·scikit-learn·statsmodels·numpy和pandas