ElasticSearch(三)—文档字段参数设置以及元字段

一、 字段参数设置

analyzer:

指定分词器。elasticsearch 是一款支持全文检索的分布式存储系统,对于 text类型的字段,首先会使用分词器进行分词,然后将分词后的词根一个一个存储在倒排索引中,后续查询主要是针对词根的搜索。

analyzer 该参数可以在每个查询、每个字段、每个索引中使用,其优先级如下(越靠前越优先):

1、字段上定义的分词器

2、索引配置中定义的分词器

3、默认分词器(standard)

normalizer:

规范化,主要针对 keyword 类型,在索引该字段或查询字段之前,可以先对原始数据进行一些简单的处理,然后再将处理后的结果当成一个词根存入倒排索引中,默认为 null,比如:

bash 复制代码
PUT index
{ "settings": { "analysis": { "normalizer": { "my_normalizer": { // 1
"type": "custom", "char_filter": [], "filter": ["lowercase", "asciifolding"] // 2
}
}
}
},"mappings": { "_doc": { "properties": { "foo": { "type": "keyword", "normalizer": "my_normalizer" // 3
}
}
}
}
}

代码 1:首先在 settings 中的 analysis 属性中定义 normalizer。

代码 2:设置标准化过滤器,示例中的处理器为小写、asciifolding。

代码 3:在定义映射时,如果字段类型为 keyword,可以使用 normalizer引用定义好的 normalizer

coerce:

数据不总是我们想要的,由于在转换 JSON body 为真正 JSON 的时候,整型数字 5 有可能会被写成字符串"5"或者浮点数 5.0,这个参数可以将数值不合法的部分去除。默认为 true。

例如:将字符串会被强制转换为整数、浮点数被强制转换为整数。

例如存在如下字段类型:

bash 复制代码
"number_one": { "type": "integer"}

声明 number_one 字段的类型为数字类型,那是否允许接收"6"字符串形式的数据呢?因为在 JSON 中,"6"用来赋给 int 类型的字段,也是能接受的,默认 coerce 为 true,表示允许这种赋值,但如果 coerce 设置为 false,此时 es只能接受不带双引号的数字,如果在coerce=false 时,将"6"赋值给 number_one时会抛出类型不匹配异常。

doc_values:

Doc values 的存在是因为倒排索引只对某些操作是高效的。 倒排索引的优势 在于查找包含某个项的文档,而对于从另外一个方向的相反操作并不高效,即:确定哪些项是否存在单个文档里,聚合需要这种次级的访问模式。

对于以下倒排索引:

如果我们想要获得所有包含 brown 的文档的词的完整列表,倒排索引是根据项来排序的,所以我们首先在词项列表中找到 brown ,然后扫描所有列,找到包含 brown 的文档。我们可以快速看到 Doc_1 和 Doc_2 包含 brown 这个 token。

然后,对于聚合部分,我们需要找到 Doc_1 和 Doc_2 里所有唯一的词项。 用倒排索引做这件事情代价很高: 我们会迭代索引里的每个词项并收集 Doc_1 和 Doc_2 列里面 token。这很慢而且难以扩展:随着词项和文档的数量增加,执行时间也会增加。

Doc values 通过转置两者间的关系来解决这个问题。倒排索引将词项映射到包含它们的文档,doc values 将文档映射到它们包含的词项:

当数据被转置之后,想要收集到 Doc_1 和 Doc_2 的唯一 token 会非常容易。获得每个文档行,获取所有的词项,然后求两个集合的并集。

doc_values 缺省是 true,即是开启的,并且只适用于非 text 类型的字段。

dynamic:

是否允许动态的隐式增加字段。在执行 index api 或更新文档 API 时,对于_source 字段中包含一些原先未定义的字段采取的措施,根据 dynamic 的取值,会进行不同的操作:

true,默认值,表示新的字段会加入到类型映射中。

false,新的字段会被忽略,即不会存入_souce 字段中,即不会存储新字段,也无法通过新字段进行查询。

strict,会显示抛出异常,需要新使用 put mapping api 先显示增加字段映射。

enabled:

是否建立索引,默认情况下为 true,es 会尝试为你索引所有的字段,但有时候某些类型的字段,无需建立索引,只是用来存储数据即可。也就是说,ELasticseaech 默认会索引所有的字段,enabled 设为 false 的字段,elasicsearch 会跳过字段内容,该字段只能从_source 中获取,但是不可搜。只有映射类型(type)和 object 类型的字段可以设置 enabled 属性。

eager_global_ordinals:

表示是否提前加载全局顺序号。Global ordinals 是一个建立在 doc values 和fielddata 基础上的数据结构, 它为每一个精确词按照字母顺序维护递增的编号。每一个精确词都有一个独一无二的编号 并且 精确词 A 小于精确词 B 的编号. Global ordinals 只支持 keyword 和 text 型字段,在 keyword 字段中, 默认是启用的 而在 text 型字段中 只有 fielddata 和相关属性开启的状态下才是可用的。

fielddata:

为了解决排序与聚合,elasticsearch 提供了 doc_values 属性来支持列式存储,但 doc_values 不支持 text 字段类型。因为 text 字段是需要先分析(分词),会影响 doc_values 列式存储的性能。

es 为了支持 text 字段高效排序与聚合,引入了一种新的数据结构(fielddata),使用内存进行存储。默认构建时机为第一次聚合查询、排序操作时构建,主要存储倒排索引中的词根与文档的映射关系,聚合,排序操作在内存中执行。因此fielddata 需要消耗大量的 JVM 堆内存。一旦 fielddata 加载到内存后,它将永久存在。

通常情况下,加载 fielddata 是一个昂贵的操作,故默认情况下,text 字段的字段默认是不开启 fielddata 机制。在使用 fielddata 之前请慎重考虑为什么要开启 fielddata。

ignore_above:

ignore_above 用于指定字段索引和存储的长度最大值,超过最大值的会被忽略。

ignore_malformed:

ignore_malformed 可以忽略不规则数据,对于 login 字段,有人可能填写的是 date 类型,也有人填写的是邮件格式。给一个字段索引不合适的数据类型发生异常,导致整个文档索引失败。如果 ignore_malformed 参数设为 true,异常会被忽略,出异常的字段不会被索引,其它字段正常索引。

index:

index 属性指定字段是否索引,不索引也就不可搜索,取值可以为 true 或者false,缺省为 true。

index_options:

index_options 控制索引时存储哪些信息到倒排索引中,,用于搜索和突出显示目的。

docs 只存储文档编号

freqs 存储文档编号和词项频率。

positions 文档编号、词项频率、词项的位置被存储

offsets 文档编号、词项频率、词项的位置、词项开始和结束的字符位置都被存储

fields:

fields 可以让同一文本有多种不同的索引方式,比如一个 String 类型的字段,可以使用 text 类型做全文检索,使用 keyword 类型做聚合和排序。

norms:

norms 参数用于标准化文档,以便查询时计算文档的相关性。norms 虽然对评分有用,但是会消耗较多的磁盘空间,如果不需要对某个字段进行评分,最好不要开启 norms。

null_value:

一般来说值为 null 的字段不索引也不可以搜索,null_value 参数可以让值为null 的字段显式的可索引、可搜索。

position_increment_gap:

文本数组元素之间位置信息添加的额外值。

举例,一个字段的值为数组类型:"names": [ "John Abraham", "Lincoln Smith"]。

为了区别第一个字段和第二个字段,Abraham 和 Lincoln 在索引中有一个间距,默认是 100。例子如下,这是查询"Abraham Lincoln"是查不到的:

bash 复制代码
PUT my_index/groups/1
{ "names": [ "John Abraham", "Lincoln Smith"]}
bash 复制代码
GET my_index/groups/_search
{ "query": { "match_phrase": {"names": { "query": "Abraham Lincoln"}}}}

指定间距大于 10 0 可以查询到:

bash 复制代码
GET my_index/groups/_search
{ "query": { "match_phrase": { "names": { "query": "Abraham Lincoln", "slop":101}}}}

想要调整这个值,在 mapping 中通过 position_increment_gap 参数指定间距即可。

properties:

Object 或者 nested 类型,下面还有嵌套类型,可以通过 properties 参数指定。比如:

bash 复制代码
PUT my_index
{ "mappings": { "my_type": { "properties": { "manager": { "properties": { "age": { "type": "integer" }, "name": { "type": "text" }}},"employees": { "type":"nested", "properties": { "age": { "type": "integer" }, "name": { "type":"text" }}}}}}}

对应的文档结构:

bash 复制代码
PUT my_index/my_type/1
{ "region": "US", "manager": { "name": "Alice White", "age": 30},"employees": [{"name": "John Smith", "age": 34},{ "name": "Peter Brown", "age": 26}]}

search_analyzer:

通常,在索引时和搜索时应用相同的分析器,以确保查询中的术语与反向索引中的术语具有相同的格式,如果想要在搜索时使用与存储时不同的分词器,则使用 search_analyzer 属性指定,通常用于 ES 实现即时搜索(edge_ngram)。

similarity:

指定相似度算法,其可选值:

BM25

当前版本的默认值,使用 BM25 算法。

classic

使用 TF/IDF 算法,曾经是 es,lucene 的默认相似度算法。

boolean

一个简单的布尔相似度,当不需要全文排序时使用,并且分数应该只基于查

询条件是否匹配。布尔相似度为术语提供了一个与它们的查询boost相等的分数。

store:

默认情况下,字段值被索引以使其可搜索,但它们不存储。这意味着可以查询字段,但无法检索原始字段值。通常这并不重要。字段值已经是_source 字段的一部分,该字段默认存储。如果您只想检索单个字段或几个字段的值,而不是整个_source,那么这可以通过字段过滤上下文 source filting context 来实现。

在某些情况下,存储字段是有意义的。例如,如果您有一个包含标题、日期和非常大的内容字段的文档,您可能只想检索标题和日期,而不需要从大型_source 字段中提取这些字段,可以将标题和日期字段的 store 定义为 ture。

term_vector:

Term vectors 包含分析过程产生的索引词信息,包括:

索引词列表

每个索引词的位置(或顺序)

索引词在原始字符串中的原始位置中的开始和结束位置的偏移量。

term vectors 会被存储,索引它可以作为一个特使的文档返回。

term_vector 可取值:

no

不存储 term_vector 信息,默认值。

yes

只存储字段中的值。

with_positions

存储字段中的值与位置信息。

with_offsets

存储字段中的值、偏移量

with_positions_offsets

存储字段中的值、位置、偏移量信息。

二、 元字段 meta-fields

一个文档根据我们定义的业务字段保存有数据之外,它还包含了元数据字段(meta-fields)。元字段不需要用户定义,在任一文档中都存在,有点类似于数据库的表结构数据。在名称上有个显著的特征,都是以下划线"_"开头。

大体分为五种类型:身份(标识)元数据、索引元数据、文档元数据、路由元数据以及其他类型的元数据,当然不是每个文档这些元字段都有的。

身份(标识)元数据

_index:文档所属索引 , 自动被索引,可被查询,聚合,排序使用,或者脚本里访问。

_type:文档所属类型,自动被索引,可被查询,聚合,排序使用,或者脚本里访问。

_id:文档的唯一标识,建索引时候传入 ,不被索引,可通过_uid 被查询,脚本里使用,不能参与聚合或排序。

_uid:由_type 和_id 字段组成,自动被索引 ,可被查询,聚合,排序使用,或者脚本里访问,6.0.0 版本后已废止。

索引元数据:

_all: 自动组合所有的字段值,以空格分割,可以指定分器词索引,但是整个值不被存储,所以此字段仅仅能被搜索,不能获取到具体的值。6.0.0 版本后已废止。

_field_names:索引了每个字段的名字,可以包含 null 值,可以通过 exists查询或 missing 查询方法来校验特定的字段

文档元数据:

_source : 一个 doc 的原生的 json 数据,不会被索引,用于获取提取字段值 ,启动此字段,索引体积会变大,如果既想使用此字段又想兼顾索引体积,可以开启索引压缩。_source 是可以被禁用的,不过禁用之后部分功能不再支持,这些功能包括:部分 update api、运行时高亮搜索结果索引重建、修改 mapping 以及分词、索引升级debug 查询或者聚合语句索引自动修复。

_size: 整个_source 字段的字节数大小,需要单独安装一个 mapper-size 插

件才能展示。

路由元数据:

_routing: 一个 doc 可以被路由到指定的 shard 上。

其他

_meta:一般用来存储应用相关的元信息。例如:

bash 复制代码
put /open-soft/_mapping
{ "_meta": { "class": "cn.enjoyedu.User", "version": {"min": "1.0", "max": "1.3"}}}
相关推荐
woshiabc1115 小时前
windows安装Elasticsearch及增删改查操作
大数据·elasticsearch·搜索引擎
arnold668 小时前
探索 ElasticSearch:性能优化之道
大数据·elasticsearch·性能优化
成长的小牛23311 小时前
es使用knn向量检索中numCandidates和k应该如何配比更合适
大数据·elasticsearch·搜索引擎
Elastic 中国社区官方博客12 小时前
Elasticsearch:什么是查询语言?
大数据·数据库·elasticsearch·搜索引擎·oracle
启明真纳13 小时前
elasticache备份
运维·elasticsearch·云原生·kubernetes
幽弥千月1 天前
【ELK】ES单节点升级为集群并开启https【亲测可用】
elk·elasticsearch·https
运维&陈同学1 天前
【Elasticsearch05】企业级日志分析系统ELK之集群工作原理
运维·开发语言·后端·python·elasticsearch·自动化·jenkins·哈希算法
Y编程小白1 天前
Git版本控制工具--基础命令和分支管理
大数据·git·elasticsearch
酱学编程2 天前
ES搜索原理
大数据·elasticsearch·搜索引擎
龙少95432 天前
【SpringBoot中怎么使用ElasticSearch】
spring boot·elasticsearch·jenkins