SoftMax函数

Softmax函数是一种常用于多类分类任务的激活函数,其主要作用是将一个实数向量转换成一个概率分布。每个元素的值在(0)到(1)之间,并且所有元素的和为(1)。Softmax函数的公式如下:

Softmax ( z i ) = e z i ∑ j = 1 K e z j \text{Softmax}(z_i) = \frac{e^{z_i}}{\sum_{j=1}^K e^{z_j}} Softmax(zi)=∑j=1Kezjezi

其中:

  • z i z_i zi 是输入向量中的第(i)个元素。
  • K K K 是输入向量的总元素数量,即分类的总数。
  • 分母是所有输入元素的指数和,这个和作为归一化常数,确保所有输出值的总和为(1)。

直观理解

Softmax函数的目的是将输入向量的元素转化为代表概率的值,这些值表示对应类别的相对可能性。由于使用了指数函数,较大的输入值会对输出的概率分布产生较大的影响,使得Softmax函数在实际应用中对于突出主要特征非常有效。

使用场景

在神经网络中,Softmax函数通常用作输出层的激活函数,用于多类分类问题。例如,在处理手写数字识别或图片分类时,Softmax能够提供一个清晰的概率基础来判断输入图片最可能属于哪一个类别。

相关推荐
roman_日积跬步-终至千里27 分钟前
【模式识别与机器学习(16)】聚类分析【1】:基础概念与常见方法
人工智能·机器学习
LDG_AGI2 小时前
【推荐系统】深度学习训练框架(十):PyTorch Dataset—PyTorch数据基石
人工智能·pytorch·分布式·python·深度学习·机器学习
长桥夜波2 小时前
机器学习日报23
人工智能·机器学习
roman_日积跬步-终至千里2 小时前
【模式识别与机器学习(9)】数据预处理-第一部分:数据基础认知
人工智能·机器学习
胡乱编胡乱赢3 小时前
Decaf攻击:联邦学习中的数据分布分解攻击
人工智能·深度学习·机器学习·联邦学习·decaf攻击
青云交3 小时前
Java 大视界 -- Java 大数据机器学习模型在自然语言处理中的跨语言信息检索与知识融合
机器学习·自然语言处理·java 大数据·知识融合·跨语言信息检索·多语言知识图谱·低资源语言处理
_Twink1e3 小时前
【HCIA-AIV4.0】2025题库+解析(二)
人工智能·深度学习·机器学习
铅笔侠_小龙虾4 小时前
深度学习理论推导--多元线性回归
人工智能·深度学习·机器学习
从零开始学习人工智能4 小时前
PDF解析双雄对决:Unstructured vs PyMuPDF 深度对比与选型指南
数据库·人工智能·机器学习
胡乱编胡乱赢5 小时前
关于联邦学习中的Decaf攻击基础知识
人工智能·深度学习·机器学习