SoftMax函数

Softmax函数是一种常用于多类分类任务的激活函数,其主要作用是将一个实数向量转换成一个概率分布。每个元素的值在(0)到(1)之间,并且所有元素的和为(1)。Softmax函数的公式如下:

Softmax ( z i ) = e z i ∑ j = 1 K e z j \text{Softmax}(z_i) = \frac{e^{z_i}}{\sum_{j=1}^K e^{z_j}} Softmax(zi)=∑j=1Kezjezi

其中:

  • z i z_i zi 是输入向量中的第(i)个元素。
  • K K K 是输入向量的总元素数量,即分类的总数。
  • 分母是所有输入元素的指数和,这个和作为归一化常数,确保所有输出值的总和为(1)。

直观理解

Softmax函数的目的是将输入向量的元素转化为代表概率的值,这些值表示对应类别的相对可能性。由于使用了指数函数,较大的输入值会对输出的概率分布产生较大的影响,使得Softmax函数在实际应用中对于突出主要特征非常有效。

使用场景

在神经网络中,Softmax函数通常用作输出层的激活函数,用于多类分类问题。例如,在处理手写数字识别或图片分类时,Softmax能够提供一个清晰的概率基础来判断输入图片最可能属于哪一个类别。

相关推荐
数字化转型202533 分钟前
基于六大产品线+三项核心工作
程序人生·机器学习
汽车仪器仪表相关领域33 分钟前
经典指针+瞬态追踪:MTX-A模拟废气温度(EGT)计 改装/赛车/柴油车排气温度监测实战全解
大数据·功能测试·算法·机器学习·可用性测试
HyperAI超神经38 分钟前
软银/英伟达/红杉资本/贝佐斯等参投,机器人初创公司Skild AI融资14亿美元,打造通用基础模型
人工智能·深度学习·机器学习·机器人·ai编程
民乐团扒谱机1 小时前
机器学习 第二弹 和AI斗智斗勇 机器学习核心知识点全解析(GBDT/XGBoost/LightGBM/随机森林+调参方法)
算法·决策树·机器学习
charlie1145141911 小时前
机器学习概论:一门教计算机如何“不确定地正确”的学问
人工智能·笔记·机器学习·工程实践
Echo_NGC22372 小时前
【联邦学习完全指南】Part 5:安全攻防与隐私保护
人工智能·深度学习·神经网络·安全·机器学习·联邦学习
清铎2 小时前
项目_华为杯’数模研赛复盘_第二问
深度学习·算法·机器学习
杨_晨3 小时前
大模型微调训练FAQ - Loss与准确率关系
人工智能·经验分享·笔记·深度学习·机器学习·ai
Dyanic4 小时前
通用图像融合方法利用梯度迁移学习与融合规则展开
人工智能·机器学习·迁移学习
Yeats_Liao4 小时前
负载均衡设计:多节点集群下的请求分发与资源调度
运维·人工智能·深度学习·机器学习·华为·负载均衡