SoftMax函数

Softmax函数是一种常用于多类分类任务的激活函数,其主要作用是将一个实数向量转换成一个概率分布。每个元素的值在(0)到(1)之间,并且所有元素的和为(1)。Softmax函数的公式如下:

Softmax ( z i ) = e z i ∑ j = 1 K e z j \text{Softmax}(z_i) = \frac{e^{z_i}}{\sum_{j=1}^K e^{z_j}} Softmax(zi)=∑j=1Kezjezi

其中:

  • z i z_i zi 是输入向量中的第(i)个元素。
  • K K K 是输入向量的总元素数量,即分类的总数。
  • 分母是所有输入元素的指数和,这个和作为归一化常数,确保所有输出值的总和为(1)。

直观理解

Softmax函数的目的是将输入向量的元素转化为代表概率的值,这些值表示对应类别的相对可能性。由于使用了指数函数,较大的输入值会对输出的概率分布产生较大的影响,使得Softmax函数在实际应用中对于突出主要特征非常有效。

使用场景

在神经网络中,Softmax函数通常用作输出层的激活函数,用于多类分类问题。例如,在处理手写数字识别或图片分类时,Softmax能够提供一个清晰的概率基础来判断输入图片最可能属于哪一个类别。

相关推荐
Blossom.1181 小时前
把AI“贴”进路灯柱:1KB决策树让老旧路灯自己报「灯头松动」
java·人工智能·python·深度学习·算法·决策树·机器学习
极客BIM工作室2 小时前
ControlNet:Adding Conditional Control to Text-to-Image Diffusion Models
人工智能·深度学习·机器学习
长桥夜波5 小时前
机器学习日报07
人工智能·机器学习
长桥夜波5 小时前
机器学习日报11
人工智能·机器学习
望十五江洋12 小时前
泊松分布的参数可加性
线性代数·机器学习·概率论
西西弗Sisyphus12 小时前
线性代数 - 初等矩阵
人工智能·线性代数·机器学习
weixin_4296302612 小时前
第6章 支持向量机
算法·机器学习·支持向量机
背包客研究12 小时前
如何在机器学习中使用特征提取对表格数据进行处理
人工智能·机器学习
大大dxy大大13 小时前
机器学习-KNN算法示例
人工智能·算法·机器学习
机器学习ing.14 小时前
U-Net保姆级教程:从原理到医学细胞分割实战(PyTorch版)!
人工智能·pytorch·python·深度学习·机器学习