SoftMax函数

Softmax函数是一种常用于多类分类任务的激活函数,其主要作用是将一个实数向量转换成一个概率分布。每个元素的值在(0)到(1)之间,并且所有元素的和为(1)。Softmax函数的公式如下:

Softmax ( z i ) = e z i ∑ j = 1 K e z j \text{Softmax}(z_i) = \frac{e^{z_i}}{\sum_{j=1}^K e^{z_j}} Softmax(zi)=∑j=1Kezjezi

其中:

  • z i z_i zi 是输入向量中的第(i)个元素。
  • K K K 是输入向量的总元素数量,即分类的总数。
  • 分母是所有输入元素的指数和,这个和作为归一化常数,确保所有输出值的总和为(1)。

直观理解

Softmax函数的目的是将输入向量的元素转化为代表概率的值,这些值表示对应类别的相对可能性。由于使用了指数函数,较大的输入值会对输出的概率分布产生较大的影响,使得Softmax函数在实际应用中对于突出主要特征非常有效。

使用场景

在神经网络中,Softmax函数通常用作输出层的激活函数,用于多类分类问题。例如,在处理手写数字识别或图片分类时,Softmax能够提供一个清晰的概率基础来判断输入图片最可能属于哪一个类别。

相关推荐
式51619 分钟前
RAG检索增强生成基础(一)RAG基础原理
人工智能·机器学习
格林威32 分钟前
线缆外皮破损检测:保障电气安全的 7 个核心策略,附 OpenCV+Halcon 实战代码!
人工智能·opencv·安全·机器学习·计算机视觉·视觉检测·工业相机
CCPC不拿奖不改名1 小时前
大语言模型基础:大语言模型核心原理(大语言模型和传统的机器学习的差异)
人工智能·机器学习·语言模型
ldccorpora1 小时前
GALE Phase 1 Distillation Training数据集介绍,官网编号LDC2007T20
人工智能·深度学习·算法·机器学习·自然语言处理·语音识别
木头程序员1 小时前
生成式AI可靠性与可控性技术研究:从真实性到可控编辑
图像处理·人工智能·深度学习·机器学习·计算机视觉·语言模型
咚咚王者2 小时前
人工智能之核心基础 机器学习 第十五章 数据预处理
人工智能·python·机器学习
AC赳赳老秦2 小时前
华为昇腾适配DeepSeek实战:FP8转BF16权重与FlashMLA加速配置详解
大数据·人工智能·机器学习·数据分析·kafka·etl工程师·deepseek
ACERT3332 小时前
9.吴恩达机器学习——决策树
人工智能·决策树·机器学习
技术小黑2 小时前
TensorFlow学习系列02 | 实现彩色图片分类
python·机器学习·tensorflow
中草药z12 小时前
【嵌入模型】概念、应用与两大 AI 开源社区(Hugging Face / 魔塔)
人工智能·算法·机器学习·数据集·向量·嵌入模型