SoftMax函数

Softmax函数是一种常用于多类分类任务的激活函数,其主要作用是将一个实数向量转换成一个概率分布。每个元素的值在(0)到(1)之间,并且所有元素的和为(1)。Softmax函数的公式如下:

Softmax ( z i ) = e z i ∑ j = 1 K e z j \text{Softmax}(z_i) = \frac{e^{z_i}}{\sum_{j=1}^K e^{z_j}} Softmax(zi)=∑j=1Kezjezi

其中:

  • z i z_i zi 是输入向量中的第(i)个元素。
  • K K K 是输入向量的总元素数量,即分类的总数。
  • 分母是所有输入元素的指数和,这个和作为归一化常数,确保所有输出值的总和为(1)。

直观理解

Softmax函数的目的是将输入向量的元素转化为代表概率的值,这些值表示对应类别的相对可能性。由于使用了指数函数,较大的输入值会对输出的概率分布产生较大的影响,使得Softmax函数在实际应用中对于突出主要特征非常有效。

使用场景

在神经网络中,Softmax函数通常用作输出层的激活函数,用于多类分类问题。例如,在处理手写数字识别或图片分类时,Softmax能够提供一个清晰的概率基础来判断输入图片最可能属于哪一个类别。

相关推荐
only-code16 分钟前
Fast-DetectGPT:用“条件概率曲率”拆穿 AI 伪装的文本
人工智能·深度学习·机器学习·ai大模型·论文解读·ai检测·文本检测
兆。34 分钟前
python全栈-人工智能基础-机器学习
人工智能·python·机器学习
Coovally AI模型快速验证1 小时前
基于SimCLR的自监督 YOLO:YOLOv5/8也能在低标注场景目标检测性能飙升
人工智能·科技·yolo·目标检测·机器学习·计算机视觉
8***B2 小时前
Python机器学习库Scikit-learn使用
python·机器学习·scikit-learn
啦啦啦在冲冲冲3 小时前
lora矩阵的初始化为啥B矩阵为0呢,为啥不是A呢
深度学习·机器学习·矩阵
sensen_kiss3 小时前
INT301 Bio-computation 生物计算(神经网络)Pt.8 主成分分析(PCA)与无监督学习
神经网络·学习·线性代数·机器学习
纪伊路上盛名在3 小时前
Alphafold实用指南—官网教程3
数据库·人工智能·机器学习·alphafold·计算生物学·结构生物学
拾零吖4 小时前
Attention by 3B1B
人工智能·深度学习·机器学习
钟智强4 小时前
线性映射(Linear Mapping)原理详解:机器学习中的数学基石
人工智能·算法·机器学习