探索极限学习机(ELM):从基础到实践的全面指南

ELM


极限学习机(Extreme Learning Machine,简称ELM)是一种高效的单层前馈神经网络,由黄广斌教授于2006年首次提出。该模型以其快速学习能力和出色的泛化性能而受到广泛关注,尤其在处理大规模数据和复杂问题时显示出显著优势。本博客将全面介绍ELM的发展历程、基本原理、功能特性、应用领域,以及如何在Python中实现ELM。

发展历程

ELM最初由黄广斌教授提出,旨在解决传统神经网络学习速度慢、易陷入局部最优、参数调整复杂等问题。自2006年问世以来,ELM得到了快速发展和广泛应用,研究者们提出了多种改进版本,如增量ELM、核ELM等,以适应更多样的数据类型和学习任务。

基本原理

ELM的核心思想是随机初始化输入层到隐藏层的权重和偏差,然后直接计算隐藏层到输出层的权重。这种结构简化了学习过程,避免了传统神经网络中反向传播算法的复杂计算。具体步骤包括:

  1. 随机初始化输入层到隐藏层的权重和偏差。
  2. 计算隐藏层的输出。
  3. 使用最小二乘法直接计算隐藏层到输出层的权重。

这种方法不仅提高了学习速度,还改善了泛化性能。

功能和应用

ELM在许多领域都有应用,例如图像处理、数据分类、回归分析以及语音识别等。由于其训练速度快,特别适合于大规模数据处理和实时学习场景。此外,ELM还被应用于解决非平衡数据和特征选择问题。

Python 示例代码

以下是一个使用Python实现ELM的简单例子,用于分类任务:

python 复制代码
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelBinarizer
from sklearn.metrics import accuracy_score

# 加载数据集
data = load_iris()
X = data.data
y = data.target
y = LabelBinarizer().fit_transform(y)  # 转换为二进制编码

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 极限学习机实现
class ELM:
    def __init__(self, n_hidden_units):
        self.n_hidden_units = n_hidden_units

    def fit(self, X, y):
        self.input_weights = np.random.normal(size=(X.shape[1], self.n_hidden_units))
        self.biases = np.random.normal(size=(1, self.n_hidden_units))
        H = np.tanh(np.dot(X, self.input_weights) + self.biases)
        self.output_weights = np.dot(np.linalg.pinv(H), y)

    def predict(self, X):
        H = np.tanh(np.dot(X, self.input_weights) + self.biases)
        return H.dot(self.output_weights)

# 创建ELM模型
elm = ELM(n_hidden_units=20)
elm.fit(X_train, y_train)
y_pred = elm.predict(X_test)
y_pred = np.argmax(y_pred, axis=1)
y_test = np.argmax(y_test, axis=1)

# 评估模型
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.2f}')
相关推荐
骑猪玩狗1 分钟前
第N8周:使用Word2vec实现文本分类
人工智能·分类·word2vec
狗窝超厉害9 分钟前
研0找实习【学nlp】15---我的后续,总结(暂时性完结)
人工智能·pytorch·python·自然语言处理·bert
企业通用软件开发12 分钟前
大语言模型提示词工程学习--写小说系列(文心一言&豆包&通义千问):1~创作前的准备工作
人工智能·学习·语言模型
龙的爹233315 分钟前
论文翻译 | BERTese: Learning to Speak to BERT
人工智能·深度学习·自然语言处理·prompt·bert
神奇的布欧17 分钟前
BERT的工作原理
人工智能·深度学习·bert
孤单网愈云26 分钟前
11.22Pytorch_自动微分
人工智能·pytorch·python
weixin_4662027841 分钟前
第32周:猴痘病识别(Tensorflow实战第四周)
人工智能·python·tensorflow
Mr.Winter`1 小时前
优化求解 | 非线性最小二乘优化器Ceres安装教程与应用案例
人工智能·机器人·自动驾驶·ros·数值优化
美狐美颜sdk1 小时前
从源码到平台:基于第三方视频美颜SDK开发实时直播美颜系统
深度学习·计算机视觉·音视频·直播美颜sdk·视频美颜sdk·美颜api·主播美颜插件
Deepcong2 小时前
yolov11的目标检测理论、tensorrt实现推理
人工智能·yolo·目标检测