“神经网络的参数为什么不能全为0“的简单理解

考虑一个最简单的多层全连接网络,每一层的输出和输入之间的关系为:

复制代码
Z = AW + b

如果W和b均为0,那么整个网络除了第一层的输入不为0外,其他所有层的输入都为0,也就是说对于除了 input layer 之外的任意层,A 均为0。

而如果考虑每一层单独的导数,就会有 Z'(b) = 1Z'(A) = W, Z'(W) = A ,那么如果W都为0,则意味着对A的导数为0,而我们知道对每一层的导数都是由其上一层的导数经过链式法则得来的,而现在最上面的output layer 对A的导数全为0,那么由上往下走,每一层的梯度都需要乘以上一层的梯度,也就是0,导致整个网络的梯度全为0。

最终的结果是,除了最后一层的b,(导数为1,可以更新),所有其他的参数均不会得到更新。

相关推荐
海边夕阳20061 小时前
【每天一个AI小知识】:什么是卷积神经网络?
人工智能·经验分享·深度学习·神经网络·机器学习·cnn
生成论实验室6 小时前
宇宙生成信息编码:易经六十四卦的数学表述与生成论物理学阐释
人工智能·科技·神经网络·信息与通信·几何学
vvoennvv7 小时前
【Python TensorFlow】CNN-BiLSTM时序预测 卷积神经网络-双向长短期记忆神经网络组合模型(附代码)
python·神经网络·cnn·tensorflow·lstm·bilstm
生成论实验室8 小时前
宇宙生成信息编码全书
人工智能·科技·神经网络·信息与通信·几何学
sensen_kiss11 小时前
INT301 Bio-computation 生物计算(神经网络)Pt.8 主成分分析(PCA)与无监督学习
神经网络·学习·线性代数·机器学习
vvoennvv14 小时前
【Python TensorFlow】 CNN-GRU卷积神经网络-门控循环神经网络时序预测算法(附代码)
python·神经网络·机器学习·cnn·gru·tensorflow
强化学习与机器人控制仿真1 天前
Meta 最新开源 SAM 3 图像视频可提示分割模型
人工智能·深度学习·神经网络·opencv·目标检测·计算机视觉·目标跟踪
WWZZ20251 天前
快速上手大模型:深度学习5(实践:过、欠拟合)
人工智能·深度学习·神经网络·算法·机器人·大模型·具身智能
vvoennvv1 天前
【Python TensorFlow】 BiTCN-LSTM双向时间序列卷积长短期记忆神经网络时序预测算法(附代码)
python·神经网络·tensorflow·lstm·tcn
夏洛克信徒1 天前
从 “工具” 到 “代理”:Gemini 3.0 重构 AI 能力边界,开启智能协作新纪元
大数据·人工智能·神经网络