分析为什么在 PyTorch 中,训练好深度神经网络后要使用 model.eval()

🍉 CSDN 叶庭云:https://yetingyun.blog.csdn.net/


训练模式 VS 评估模式 。首先,我们需要明确 PyTorch 中的模型存在两种重要模式:训练模式(training mode)与评估模式(evaluation mode)。通过调用 model.eval() 方法,我们可以轻松地将模型切换到评估模式。

model.eval() 的作用在于,当它被调用时,会向模型中的所有层传达一个信号,即当前是评估模式而非训练模式 。这一看似简单的操作,实则对特定类型的层具有重要影响 。影响的具体层,主要受影响的层包括:Dropout 层、BatchNorm 层。接下来,我们将深入探讨这两种层在评估模式下的具体变化。

Dropout 层的行为变化:

  • 训练模式:随机地 "丢弃" 一定比例的神经元,以此防止模型过拟合。
  • 评估模式:则保留所有神经元,不进行任何丢弃操作。

为何采取此举?训练过程中,Dropout 通过随机丢弃神经元来有效预防过拟合现象。然而,在评估阶段,为了充分利用模型的全部潜力,我们会保留所有神经元。

BatchNorm 层的行为变化:

  • 训练模式:该模式下,BatchNorm 层会计算每个 mini-batch 的均值和方差,并利用这些统计数据对当前 batch 的数据进行归一化处理。
  • 评估模式:与训练模式不同,评估模式使用的是在整个训练过程中累积的全局均值和方差,而非当前 batch 的即时统计数据,以确保模型评估的一致性和稳定性。

为什么要这样做?在训练过程中,我们利用每个 batch 的统计数据进行规范化,以促进模型的学习。然而,在评估阶段,为确保模型输出的稳定性,避免其受单个 batch 的波动影响,我们转而采用全局统计数据。

确保一致性 。在评估模式下,多次运行相同的输入会稳定地产生相同的输出。然而,在训练模式下,这一点无法得到保证,因为如 Dropout 等层会引入随机性元素。提高推理性能时,model.eval() 方法能够禁用一些仅在训练阶段必要的计算步骤,进而加快推理速度

实际操作示例:

python 复制代码
# 训练阶段
model.train()
# ... 训练代码 ...

# 评估阶段
model.eval()
with torch.no_grad():
    # ... 评估代码 ...

注意事项:虽然 model.eval() 方法非常重要,但它并非对所有类型的层都产生影响。具体而言,它不会改变卷积层或全连接层的行为

为何如此重要?若评估时不切换至 eval 模式,将引发以下问题:

  • Dropout 可能会错误地 "丢弃" 关键特征。
  • BatchNorm 可能因采用不稳定的批次统计数据而导致结果波动。
  • 模型在评估时的表现将与训练阶段大相径庭,进而损害性能评估的准确性。

总结: model.eval() 是 PyTorch 中一个关键且重要的操作,它确保了模型在评估阶段的行为与训练阶段保持一致,从而提升了推理的稳定性和可靠性。作为最佳实践,我们应当在每次评估之前调用 model.eval(),以确保获得最准确且一致的结果。

相关推荐
Suryxin.1 天前
从0开始复现nano-vllm「model_runner-py」下半篇之核心数据编排与执行引擎调度
人工智能·pytorch·深度学习·ai·vllm
weixin_468466852 天前
PyTorch导出ONNX格式分割模型及在C#中调用预测
人工智能·pytorch·深度学习·c#·跨平台·onnx·语义分割
七夜zippoe3 天前
PyTorch深度革命:从自动微分到企业级应用
人工智能·pytorch·python
好的收到1113 天前
PyTorch深度学习(小土堆)笔记3:小土堆 Dataset 类实战笔记,99% 的新手都踩坑!看完秒懂数据加载底层逻辑!
pytorch·笔记·深度学习
小lo想吃棒棒糖3 天前
思路启发:超越Transformer的无限上下文:SSM-Attention混合架构的理论分析
人工智能·pytorch·python
励ℳ4 天前
【CNN网络入门】基于PyTorch的MNIST手写数字识别:从数据准备到模型部署全流程详解
人工智能·pytorch·深度学习
大连好光景4 天前
GCN模型构建+训练+测试入门案例
pytorch·python·深度学习
Lun3866buzha4 天前
紧固件智能检测与分类_ATSS_R101_FPN_1x_COCO算法解析与Pytorch实现
pytorch·算法·分类
power 雀儿4 天前
LibTorch张量基础
pytorch·深度学习·机器学习
查无此人byebye5 天前
实战DDPM扩散模型:MNIST手写数字生成+FID分数计算(完整可运行版)
人工智能·pytorch·python·深度学习·音视频