《动手学深度学习v2》学习笔记 | 1. 引言

写在前面

本文为《动手学深度学习v2》的学习笔记。本着自己学习、分享他人的态度,分享学习笔记,希望能对大家有所帮助。


本文为同步更新版本,文章格式可能存在问题,建议阅读以下版本:

《动手学深度学习v2》学习笔记-合集https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MzkwMjM0MzA5MA==&action=getalbum&album_id=3180615146931748866#wechat_redirect

目录

  • 1.1 日常生活中的机器学习

  • 1.2 机器学习中的关键组件

  • 1.3 各种机器学习问题

参考资料:
视频: https://www.bilibili.com/video/BV1J54y187f9
教材: https://zh.d2l.ai/chapter_introduction/index.html#chap-introduction

1.1 日常生活中的机器学习

图片分类

物体检测和分割

样式迁移

人脸合成

文字生成图片

文字生成

无人驾驶

广告推荐

1.2 机器学习中的关键组件

无论什么类型的机器学习问题,都会遇到这些组件:

  1. 可以用来学习的 数据(data)

  2. 如何转换数据的 模型(model)

  3. 一个 目标函数(objective function),用来量化模型的有效性;

  4. 调整模型参数以优化目标函数的 算法(algorithm)

1.3 各种机器学习问题

监督学习(supervised learning):

  1. 回归(regression)

  2. 分类(classification)

  3. 标记问题

  4. 搜索

  5. 推荐系统(recommender system)

  6. 序列学习

无监督学习(unsupervised learning):

  1. 聚类(clustering)

  2. 主成分分析(principal component analysis)

  3. 因果关系(causality)和概率图模型(probabilistic graphical models)

  4. 生成对抗性网络(generative adversarial networks)

强化学习(reinforcement learning)

强化学习能够与环境之间相互作用

--------------- 结束 ---------------

注:本文为个人学习笔记,仅供大家参考学习,不得用于任何商业目的。如有侵权,请联系作者删除。

相关推荐
لا معنى له5 小时前
目标检测的内涵、发展和经典模型--学习笔记
人工智能·笔记·深度学习·学习·目标检测·机器学习
Coding茶水间11 小时前
基于深度学习的非机动车头盔检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
baby_hua12 小时前
20251024_PyTorch深度学习快速入门教程
人工智能·pytorch·深度学习
博客胡13 小时前
Python-fastAPI的学习与使用
学习·fastapi·ai编程
another heaven14 小时前
【深度学习 YOLO官方模型全解析】
人工智能·深度学习·yolo
YuMiao14 小时前
WSL2 (Manjaro) 环境下 Google Antigravity AI服务网络连接与环境配置问题
ai编程
yuhaiqun198915 小时前
Typora 技能进阶:从会写 Markdown 到玩转配置 + 插件高效学习笔记
经验分享·笔记·python·学习·学习方法·ai编程·markdown
极度畅想16 小时前
脑电模型实战系列(三):DEAP 数据集处理与 Russell 环状模型实战(一)
深度学习·特征提取·情感计算·脑机接口 bci·deap数据集
方始终_16 小时前
用Spec-kit踩完3个坑后才明白,Constitution才是真正的起点!
ai编程·cursor