《动手学深度学习v2》学习笔记 | 1. 引言

写在前面

本文为《动手学深度学习v2》的学习笔记。本着自己学习、分享他人的态度,分享学习笔记,希望能对大家有所帮助。


本文为同步更新版本,文章格式可能存在问题,建议阅读以下版本:

《动手学深度学习v2》学习笔记-合集https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MzkwMjM0MzA5MA==&action=getalbum&album_id=3180615146931748866#wechat_redirect

目录

  • 1.1 日常生活中的机器学习

  • 1.2 机器学习中的关键组件

  • 1.3 各种机器学习问题

参考资料:
视频: https://www.bilibili.com/video/BV1J54y187f9
教材: https://zh.d2l.ai/chapter_introduction/index.html#chap-introduction

1.1 日常生活中的机器学习

图片分类

物体检测和分割

样式迁移

人脸合成

文字生成图片

文字生成

无人驾驶

广告推荐

1.2 机器学习中的关键组件

无论什么类型的机器学习问题,都会遇到这些组件:

  1. 可以用来学习的 数据(data)

  2. 如何转换数据的 模型(model)

  3. 一个 目标函数(objective function),用来量化模型的有效性;

  4. 调整模型参数以优化目标函数的 算法(algorithm)

1.3 各种机器学习问题

监督学习(supervised learning):

  1. 回归(regression)

  2. 分类(classification)

  3. 标记问题

  4. 搜索

  5. 推荐系统(recommender system)

  6. 序列学习

无监督学习(unsupervised learning):

  1. 聚类(clustering)

  2. 主成分分析(principal component analysis)

  3. 因果关系(causality)和概率图模型(probabilistic graphical models)

  4. 生成对抗性网络(generative adversarial networks)

强化学习(reinforcement learning)

强化学习能够与环境之间相互作用

--------------- 结束 ---------------

注:本文为个人学习笔记,仅供大家参考学习,不得用于任何商业目的。如有侵权,请联系作者删除。

相关推荐
bug菌5 分钟前
零基础也能做出AI应用?Trae是如何打破编程"高墙"的?
后端·ai编程·trae
bug菌6 分钟前
当AI编程成为标配,Trae如何在激烈竞争中杀出重围?
aigc·ai编程·trae
人类发明了工具7 分钟前
【深度学习-基础知识】单机多卡和多机多卡训练
人工智能·深度学习
CoovallyAIHub18 分钟前
方案 | 动车底部零部件检测实时流水线检测算法改进
深度学习·算法·计算机视觉
CoovallyAIHub21 分钟前
方案 | 光伏清洁机器人系统详细技术实施方案
深度学习·算法·计算机视觉
用户40993225021222 分钟前
容器化部署FastAPI应用:如何让你的任务系统代码在云端跳舞?
后端·ai编程·trae
大千AI助手2 小时前
SWE-bench:真实世界软件工程任务的“试金石”
人工智能·深度学习·大模型·llm·软件工程·代码生成·swe-bench
猫头虎3 小时前
猫头虎AI分享|一款Coze、Dify类开源AI应用超级智能体快速构建工具:FastbuildAI
人工智能·开源·prompt·github·aigc·ai编程·ai-native
数据智能老司机4 小时前
面向企业的图学习扩展——图简介
人工智能·机器学习·ai编程
盼小辉丶4 小时前
PyTorch生成式人工智能——使用MusicGen生成音乐
pytorch·python·深度学习·生成模型