FLASK 缓存(flask_caching)

1、目标

为了尽量减少缓存穿透,并同时减少web的响应时间,可以针对那些需要一定时间才能获取结果的函数和那些不需要频繁更新的视图函数提供缓存服务,可以在一定的时间内直接返回结果而不是每次都需要计算或者从数据库中查找。

2、 集成

bash 复制代码
pip install Flask-Caching==2.3.0
pip install cachelib==0.9.0

3、使用

3.1、配置

  • null: 不缓存。
  • simple: 使用本地Python字典缓存。这不是真正的线程安全。
  • memcached: 使用memcached服务器作为后端。支持pylibmc或memcache或谷歌应用程序引擎的memcache库。
  • gaememcached: MemcachedCache一个不同的名称。
  • redis: 使用 Redis 作为后端存储缓存值。
  • filesystem: 使用文件系统来存储缓存值。
  • saslmemcached:使用memcached服务器作为后端。使用SASL建立与memcached服务器的连接。pylibmc是必须的,libmemcached必须支持SASL。
bash 复制代码
class BaseConfig:
    # 缓存配置
    CACHE_TYPE = os.getenv('CACHE_TYPE') or 'SimpleCache'
    CACHE_DEFAULT_TIMEOUT = os.getenv('CACHE_DEFAULT_TIMEOUT') or 300

初始化及注册蓝图

bash 复制代码
from flask import Flask
from flask_caching import Cache
# 包名需要修改
from applications.configs.config import BaseConfig
cache = Cache(config={'CACHE_TYPE': BaseConfig.CACHE_TYPE, 'CACHE_DEFAULT_TIMEOUT': BaseConfig.CACHE_DEFAULT_TIMEOUT})

#缓存配置
'''
参数:
timeout:超时时间
key_prefix:设置该函数的标志
unless:设置是否启用缓存,如果为True,不启用缓存
forced_update:设置缓存是否实时更新,如果为True,无论是否过期都将更新缓存
query_string:为True时,缓存键是先将参数排序然后哈希的结果
cache.memoize:装饰器,装饰有参数函数,使得该函数结果可以缓存
make_name:设置函数的标志,如果没有就使用装饰的函数
# 其他参数同cached

cache.delete_memoized:删除缓存
参数:
fname:缓存函数的名字或引用
*args:函数参数

cache.clear() # 清除缓存所有的缓存,这个操作需要慎重
cache.cache # 获取缓存对象

#获取某个网页是否存在缓存,key值如'view//gbook.html'
cache.cache.has('view/{}'.format(request.path))
#打印该缓存
print(request.path,cache.get('view/{}'.format(request.path)))
#删除该缓存
cache.delete('view//gbook.html')
'''

# 注册
def init_cache(app: Flask):
    cache.init_app(app)

3.2、使用

可选参数有:

  • key_prefix:缓存指定的函数;
  • unless:是否启用缓存,如果为True,不启用缓存;
  • forced_update:缓存是否实时更新,如果为True,无论是否过期都将更新缓存;
  • query_string:为True时,缓存键是先将参数排序然后哈希的结果;
  • timeout: 超时会自动刷新缓存。

在视图函数中

bash 复制代码
@app.route('/index')                                                                                                         
@cache.cached(timeout=50)
def index():  
    print "index called"
    return "Hello World"

在其他重复调用的函数

bash 复制代码
@cache.cached(timeout=300, key_prefix="event", make_cache_key='event_info_cache')
def get_event_dict():
	pass

注意:key_prefix 一定要加,否则在一个视图函数中,调取俩个使用了缓存的函数,会返回相同的结果。

相关推荐
pipip.18 分钟前
Redis vs MongoDB:内存字典与文档库对决
数据库·redis·缓存
信仰_27399324313 小时前
RedisCluster客户端路由智能缓存
java·spring·缓存
兰雪簪轩13 小时前
仓颉语言内存布局优化技巧:从字节对齐到缓存友好的深度实践
java·spring·缓存
顾安r14 小时前
11.10 脚本算法 五子棋 「重要」
服务器·前端·javascript·游戏·flask
漠然&&15 小时前
实战案例:用 Guava ImmutableList 优化缓存查询系统,解决多线程数据篡改与内存浪费问题
java·开发语言·缓存·guava
IT小哥哥呀16 小时前
MyBatis 性能优化指南:Mapper 映射、缓存与批量操作实战
缓存·性能优化·mybatis·数据库优化·批量插入·分布式系统·sql性能
顾安r19 小时前
11.9 脚本网页 消消乐
前端·javascript·flask·html·pygame
.豆鲨包19 小时前
【Android】Android内存缓存LruCache与DiskLruCache的使用及实现原理
android·java·缓存
拾忆,想起1 天前
10分钟通关OSI七层模型:从光纤到APP的奇幻之旅
java·redis·网络协议·网络安全·缓存·哈希算法
gggg远1 天前
Redis 高级篇(未完结1/3)
数据库·redis·缓存