Python的GDAL库绘制多波段、长时序遥感影像时间曲线图

本文介绍基于Python 中的gdal模块,对大量长时间序列 的栅格遥感影像文件,绘制其每一个波段中、若干随机指定的像元的时间序列曲线图的方法。

在之前的文章中,我们就已经介绍过基于gdal模块,对大量多时相 栅格图像,批量绘制像元时间序列折线图 的方法。不过当时文章中的需求,每1个时相都对应着3个不同的遥感影像文件,而每1个遥感影像文件则都仅仅只有1个波段;而在本文中,我们每1景遥感影像都对应着2个波段,我们最终绘制的多条曲线图,也都来自于这每1景遥感影像的不同波段。

我们再来明确一下本文的需求。现在有一个文件夹,其中放置了大量的遥感影像文件 ,如下图所示。其中,所有遥感影像都是同一地区、不同成像时间的图像,其各自的空间参考信息、像元行数与列数等都是一致的,文件名中有表示成像日期 的具体字段;且每1景遥感影像都具有2个波段。现在我们希望,在遥感影像覆盖的区域内,随机选取若干的像元,基于这些像元,我们绘制其随时间变化的曲线图。因为我们的每个遥感影像都有2个波段,且都希望绘制出曲线图,因此最终的曲线图一共就有2条曲线。

明确了需求,我们就可以开始代码的撰写。本文用到的代码如下。

python 复制代码
# -*- coding: utf-8 -*-
"""
Created on Tue Jul 25 23:04:41 2023

@author: fkxxgis
"""

import os
import random
import matplotlib.pyplot as plt
from osgeo import gdal

def load_image(image_path):
    dataset = gdal.Open(image_path)
    band1 = dataset.GetRasterBand(1).ReadAsArray()
    band2 = dataset.GetRasterBand(2).ReadAsArray()
    del dataset
    return band1, band2

def plot_time_series(image_folder, pic_folder, num_pixels):
    image_files = [file for file in os.listdir(image_folder) if file.endswith(".tif")]
    band1_merge, band2_merge = [], []
    i = 0
    
    for image_file in image_files:
        image_path = os.path.join(image_folder, image_file)
        band1, band2 = load_image(image_path)
        band1_merge.append(band1)
        band2_merge.append(band2)
        i += 1

    x_size, y_size = band1.shape
    pixel_indices = random.sample(range(x_size * y_size), num_pixels)

    for pixel_index in pixel_indices:
        x, y = divmod(pixel_index, y_size)
        band_list_1, band_list_2 = [], []
        for i in range(len(band1_merge)):
            band_data_1 = band1_merge[i]
            band_list_1.append(band_data_1[x, y])
            band_data_2 = band2_merge[i]
            band_list_2.append(band_data_2[x, y])

        plt.figure()
        plt.plot(range(len(band1_merge)), band_list_1, label="Band 1")
        plt.plot(range(len(band1_merge)), band_list_2, label="Band 2")
        plt.xlabel("Time")
        plt.ylabel("NDVI")
        plt.ylim(0, 1000)
        plt.title(f"Time Series for Pixel at ({x}, {y})")
        plt.legend()
        plt.savefig(os.path.join(pic_folder, str(x) + "_" + str(y)))
        plt.show()

image_folder_path = "E:/02_Project/Result/test"
pic_folder_path = "E:/02_Project/TIFF/Plot"
num_pixels = 50
plot_time_series(image_folder_path, pic_folder_path, num_pixels)

上述代码的具体含义如下。

首先,我们导入了需要使用的库;其中,os用于处理文件路径和目录操作,random用于随机选择像素,matplotlib.pyplot则用于绘制图像。

随后,我们定义函数load_image(image_path);这个函数接收一个影像文件路径image_path作为输入参数。随后,在函数内使用gdal库打开该影像文件,然后提取其第一个和第二个波段的数据,并分别存储在band1band2中。最后,函数返回这两个波段的数据。

接下来,我们定义函数plot_time_series(image_folder, pic_folder, num_pixels);这个函数接收三个输入参数,分别为image_folderpic_foldernum_pixels。其中,image_folder为包含多个.tif格式的影像文件的文件夹路径,pic_folder是保存生成的时间序列图像的文件夹路径,而num_pixels则指定了随机选择的像素数量,用于绘制时间序列图------这个参数设置为几,我们最后就会得到几张结果图像。

在这个函数的内部,我们通过os.listdir函数获取image_folder中所有以.tif结尾的影像文件,并将这些文件名存储在image_files列表中。然后,我们创建两个空列表band1_mergeband2_merge,用于存储所有影像文件的2个波段数据。接下来,我们遍历所有影像文件,逐个加载每个影像文件的全部波段数据,并将它们添加到对应的列表中。其次,使用random.sample函数从像素索引的范围中随机选择num_pixels个像素的索引,并保存在pixel_indices列表中。接下来,我们遍历并恢复pixel_indices中的每个像素索引,计算该像素在每个影像中的每个波段的时间序列数据,并存储在band_list_1band_list_2列表中。

随后,我们即可绘制两个时间序列图,分别表示2个波段在不同影像日期上的数值。最后,我们将图像保存到指定的文件夹pic_folder中,命名规则为x_y,其中xy分别代表像素的横、纵坐标。

执行上述代码,我们即可在指定的文件夹路径下看到我们生成的多张曲线图;如下图所示。

其中,每1张图像都表示了我们2个波段在这段时间内的数值走势;如下图所示。

至此,大功告成。

相关推荐
love530love6 分钟前
【保姆级教程】阿里 Wan2.1-T2V-14B 模型本地部署全流程:从环境配置到视频生成(附避坑指南)
人工智能·windows·python·开源·大模型·github·音视频
He19550138 分钟前
Go初级之十:错误处理与程序健壮性
开发语言·python·golang
和鲸社区1 小时前
《斯坦福CS336》作业1开源,从0手搓大模型|代码复现+免环境配置
人工智能·python·深度学习·计算机视觉·语言模型·自然语言处理·nlp
豌豆花下猫2 小时前
Python 潮流周刊#118:Python 异步为何不够流行?(摘要)
后端·python·ai
THMAIL2 小时前
深度学习从入门到精通 - LSTM与GRU深度剖析:破解长序列记忆遗忘困境
人工智能·python·深度学习·算法·机器学习·逻辑回归·lstm
wheeldown2 小时前
【数学建模】数据预处理入门:从理论到动手操作
python·数学建模·matlab·python3.11
多打代码3 小时前
2025.09.05 用队列实现栈 & 有效的括号 & 删除字符串中的所有相邻重复项
python·算法
@CLoudbays_Martin113 小时前
为什么动态视频业务内容不可以被CDN静态缓存?
java·运维·服务器·javascript·网络·python·php
程序猿炎义3 小时前
【NVIDIA AIQ】自定义函数实践
人工智能·python·学习
THMAIL4 小时前
深度学习从入门到精通 - BERT与预训练模型:NLP领域的核弹级技术详解
人工智能·python·深度学习·自然语言处理·性能优化·bert