【langchain学习】使用PandasDataFrameOutputParser对DataFrame进行数据处理

介绍如何使用Langchain结合ChatGLM对Pandas DataFrame进行数据处理。以下是具体步骤和代码示例:

  1. 导入所需库

    python 复制代码
    from config.chatglm_config import llm_glm4
    import pprint
    from typing import Any, Dict
    import pandas as pd
    from langchain.output_parsers import PandasDataFrameOutputParser
    from langchain.prompts import PromptTemplate
  2. 格式化解析器输出函数

    python 复制代码
    def format_parser_output(parser_output: Dict[str, Any]) -> None:
        for key in parser_output.keys():
            parser_output[key] = parser_output[key].to_dict()
        return pprint.PrettyPrinter(width=4, compact=True).pprint(parser_output)
  3. 定义Pandas DataFrame

    python 复制代码
    df = pd.DataFrame(
        {
            "num_legs": [2, 4, 8, 0],
            "num_wings": [2, 0, 0, 0],
            "num_specimen_seen": [10, 2, 1, 8],
        }
    )
  4. 设置解析器和提示模板

    python 复制代码
    parser = PandasDataFrameOutputParser(dataframe=df)
    df_query = "检索 num_wings 列。"
    prompt = PromptTemplate(
        template="回答用户查询。\n{format_instructions}\n{query}\n",
        input_variables=["query"],
        partial_variables={"format_instructions": parser.get_format_instructions()},
    )
  5. 执行链操作

    python 复制代码
    chain = prompt | llm_glm4 | parser
    parser_output = chain.invoke({"query": df_query})
    format_parser_output(parser_output)
  6. 得到结果

bash 复制代码
{'num_wings': {0: 2,
               1: 0,
               2: 0,
               3: 0}}

Process finished with exit code 0
相关推荐
deephub13 小时前
AI代理性能提升实战:LangChain+LangGraph内存管理与上下文优化完整指南
人工智能·深度学习·神经网络·langchain·大语言模型·rag
都叫我大帅哥18 小时前
LangChain分层记忆解决方案:完整案例
python·langchain
alex10018 小时前
AI Agent开发学习系列 - langchain之LCEL(5):如何创建一个Agent?
人工智能·python·语言模型·langchain·prompt·向量数据库·ai agent
青Cheng序员石头21 小时前
Prompt Engineering vs Vibe Coding vs Context Engineering
langchain·llm·aigc
数据智能老司机1 天前
构建由 LLM 驱动的 Neo4j 应用程序——使用 Neo4j 和 Haystack 实现强大搜索功能
langchain·llm·aigc
都叫我大帅哥2 天前
🚀 LangGraph终极指南:从入门到生产级AI工作流编排
python·langchain
showyoui2 天前
LangChain vs LangGraph:从困惑到清晰的认知之路(扫盲篇)
langchain·ai编程
_一条咸鱼_2 天前
LangChain记忆序列化与持久化方案源码级分析(37)
人工智能·面试·langchain
数据智能老司机2 天前
构建由 LLM 驱动的 Neo4j 应用程序——揭开 RAG 的神秘面纱
langchain·llm·aigc
数据智能老司机2 天前
构建由 LLM 驱动的 Neo4j 应用程序——构建智能应用的知识图谱基础理解
langchain·llm·aigc