【langchain学习】使用PandasDataFrameOutputParser对DataFrame进行数据处理

介绍如何使用Langchain结合ChatGLM对Pandas DataFrame进行数据处理。以下是具体步骤和代码示例:

  1. 导入所需库

    python 复制代码
    from config.chatglm_config import llm_glm4
    import pprint
    from typing import Any, Dict
    import pandas as pd
    from langchain.output_parsers import PandasDataFrameOutputParser
    from langchain.prompts import PromptTemplate
  2. 格式化解析器输出函数

    python 复制代码
    def format_parser_output(parser_output: Dict[str, Any]) -> None:
        for key in parser_output.keys():
            parser_output[key] = parser_output[key].to_dict()
        return pprint.PrettyPrinter(width=4, compact=True).pprint(parser_output)
  3. 定义Pandas DataFrame

    python 复制代码
    df = pd.DataFrame(
        {
            "num_legs": [2, 4, 8, 0],
            "num_wings": [2, 0, 0, 0],
            "num_specimen_seen": [10, 2, 1, 8],
        }
    )
  4. 设置解析器和提示模板

    python 复制代码
    parser = PandasDataFrameOutputParser(dataframe=df)
    df_query = "检索 num_wings 列。"
    prompt = PromptTemplate(
        template="回答用户查询。\n{format_instructions}\n{query}\n",
        input_variables=["query"],
        partial_variables={"format_instructions": parser.get_format_instructions()},
    )
  5. 执行链操作

    python 复制代码
    chain = prompt | llm_glm4 | parser
    parser_output = chain.invoke({"query": df_query})
    format_parser_output(parser_output)
  6. 得到结果

bash 复制代码
{'num_wings': {0: 2,
               1: 0,
               2: 0,
               3: 0}}

Process finished with exit code 0
相关推荐
Awesome Baron5 小时前
《Learning Langchain》阅读笔记13-Agent(1):Agent Architecture
笔记·langchain·llm
coder_pig6 小时前
👦抠腚男孩的AI学习之旅 | 7、LangChain (三) - 实战:知识库问答机器人 (RAG )
langchain·aigc·ai编程
阿加犀智能10 小时前
使用Langchain生成本地rag知识库并搭载大模型
服务器·python·langchain
乔巴先生241 天前
LLMCompiler:基于LangGraph的并行化Agent架构高效实现
人工智能·python·langchain·人机交互
AI Echoes1 天前
LLMOps平台:开源项目LMForge = GPTs + Coze
人工智能·python·langchain·开源·agent
YUELEI1181 天前
langchain 输出解析器 Output Parser
langchain
玲小珑2 天前
LangChain.js 完全开发手册(七)RAG(检索增强生成)架构设计与实现
前端·langchain·ai编程
虫无涯2 天前
LangChain中的Prompt模板如何使用?
服务器·langchain·prompt
ChinaRainbowSea2 天前
7. LangChain4j + 记忆缓存详细说明
java·数据库·redis·后端·缓存·langchain·ai编程
精灵vector3 天前
LLMCompiler:基于LangGraph的并行化Agent架构高效实现
人工智能·python·langchain