从零开始的CPP(33)多种终止条件的回溯

leetcode39

给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target ,找出 candidates 中可以使数字和为目标数 target 的 所有不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。

candidates 中的 同一个 数字可以 无限制重复被选取 。如果至少一个数字的被选数量不同,则两种组合是不同的。

对于给定的输入,保证和为 target 的不同组合数少于 150 个。

示例 1:

输入:candidates = [2,3,6,7], target = 7
输出:[[2,2,3],[7]]
解释:
2 和 3 可以形成一组候选,2 + 2 + 3 = 7 。注意 2 可以使用多次。
7 也是一个候选, 7 = 7 。
仅有这两种组合。

这道题要使用回溯来解决,之前说过,回溯只需要搞清楚终止条件(防止一直递归下去)和递推条件就行。

回溯本质是深度优先搜索,可以看图来解释。先达到最大深度,再把2 3 6 7 都试一遍。不符合要求(sum>target)就弹栈(temp.pop_back),符合要求(sum=target)就把temp存入res再弹栈。为了防止重复搜索,设置一个k,保证只搜索索引>=当前索引的,不会搜索之前搜索过的

cpp 复制代码
class Solution {
public:
    vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
    vector<vector<int>> res = {};
    vector<int> temp = {};
    int sum = 0;
    int k = 0;
    helper(k,candidates, candidates[0], sum, temp, target, res);   
    return res;   
}
void helper(int k, vector<int>& candidates, int candidate, int& sum, vector<int>& temp, int target, vector<vector<int>>& res) {
    if (sum == target) {
        res.push_back(temp);
        sum = sum - temp[temp.size() - 1];
        temp.pop_back();
        return;
    }
    if (sum > target) {
        temp.pop_back();
        sum = sum- candidate;
        return;
    }
    for (int i = k; i < candidates.size(); i++) {
        temp.push_back(candidates[i]);
        sum = sum + candidates[i];
        helper(i,candidates, candidates[i],sum, temp, target, res);         
    }
    if (temp.empty()) return;        
        sum = sum - temp[temp.size() - 1];
        temp.pop_back();
        return;       
}
};
相关推荐
c-c-developer24 分钟前
C++ Primer 自定义数据结构
数据结构·c++
不会打代码呜呜呜呜24 分钟前
小白零基础--CPP多线程
开发语言·c++·算法
辰尘_星启1 小时前
【单层神经网络】基于MXNet的线性回归实现(底层实现)
算法·线性回归·mxnet
kcwqxx1 小时前
day37|完全背包基础+leetcode 518.零钱兑换II ,377.组合总和II
c++·算法·leetcode·动态规划
程序趣谈1 小时前
算法随笔_36: 复写零
数据结构·python·算法
轩情吖2 小时前
二叉树-堆(补充)
c语言·数据结构·c++·后端·二叉树··排序
九亿AI算法优化工作室&2 小时前
GWO优化LSBooST回归预测matlab
人工智能·python·算法·机器学习·matlab·数据挖掘·回归
爱是小小的癌3 小时前
Java-数据结构-优先级队列(堆)
java·前端·数据结构
sjsjs113 小时前
【数据结构-字典树】力扣14. 最长公共前缀
数据结构·leetcode
python算法(魔法师版)3 小时前
基于机器学习鉴别中药材的方法
深度学习·线性代数·算法·机器学习·支持向量机·数据挖掘·动态规划