使用Floyd算法求解两点间最短距离

Floyd算法

Floyd算法又称为Floyd-Warshell算法,其实Warshell算法是离散数学中求传递闭包的算法,两者的思想是一致的。Floyd算法是求解多源最短路时通常选用的算法,经过一次算法即可求出任意两点之间的最短距离,并且可以处理有负权边的情况(但无法处理负权环),算法的时间复杂度是 O ( n 3 ) O(n^3) O(n3),空间复杂度是 O ( n 2 ) O(n^2) O(n2)。

python 复制代码
import numpy as np


def floyd(adjacent_matrix, source, target):
   """
   :param adjacent_matrix: 图邻接矩阵
   :param source:  起点
   :param target:  终点
   :return: shortest_path
   """
   num_node = len(adjacent_matrix)

   # 计算
   """
   矩阵D记录顶点间的最小路径
   例如D[0][3]= 10,说明顶点0 到 3 的最短路径为10;
   矩阵P记录顶点间最小路径中的中转点
   例如P[0][3]= 1 说明,0 到 3的最短路径轨迹为:0 -> 1 -> 3。
   """
   distance = np.zeros(shape=(num_node, num_node), dtype=np.int_)
   path = np.zeros(shape=(num_node, num_node), dtype=np.int_)
   for v in range(num_node):
       for w in range(num_node):
           distance[v][w] = adjacent_matrix[v][w]
           path[v][w] = w

   # 弗洛伊德算法的核心部分
   for k in range(num_node):  # k为中间点
       for v in range(num_node):  # v 为起点
           for w in range(num_node):  # w为起点
               if distance[v][w] > (distance[v][k] + distance[k][w]):
                   distance[v][w] = distance[v][k] + distance[k][w]
                   path[v][w] = path[v][k]

   print(np.asarray(path))
   shortest_path = [source]
   k = path[source][target]
   while k != target:
       shortest_path.append(k)
       k = path[k][target]
   shortest_path.append(target)
   return shortest_path


if __name__ == "__main__":
   M = 1e6
   adjacent_matrix = [
       [0, 12, M, M, M, 16, 14],
       [12, 0, 10, M, M, 7, M],
       [M, 10, 0, 3, 5, 6, M],
       [M, M, 3, 0, 4, M, M],
       [M, M, 5, 4, 0, 2, 8],
       [16, 7, 6, M, 2, 0, 9],
       [14, M, M, M, 8, 9, 0],
   ]
   shortest_path = floyd(adjacent_matrix, 0, 3)
   print(shortest_path)
   # [0, 6, 3, M, M, M],
   # [6, 0, 2, 5, M, M],
   # [3, 2, 0, 3, 4, M],
   # [M, 5, 3, 0, 5, 3],
   # [M, M, 4, 5, 0, 5],
   # [M, M, M, 3, 5, 0]

适应场景

Floyd-Warshall算法由于其 O ( n 3 ) O(n^3) O(n3)的时间复杂度,适用于节点数比较少且图比较稠密的情况。对于边数较少的稀疏图,使用基于边的算法(如Dijkstra或Bellman-Ford)通常会更高效。

相关推荐
清水白石0085 小时前
隔离的艺术:用 `unittest.mock` 驯服外部依赖,让测试真正可控
python
码农小韩6 小时前
AIAgent应用开发——大模型理论基础与应用(五)
人工智能·python·提示词工程·aiagent
百锦再6 小时前
Java中的char、String、StringBuilder与StringBuffer 深度详解
java·开发语言·python·struts·kafka·tomcat·maven
Jonathan Star7 小时前
Ant Design (antd) Form 组件中必填项的星号(*)从标签左侧移到右侧
人工智能·python·tensorflow
weixin_477271697 小时前
根象:树根。基石。基于马王堆帛书《周易》原文及甲骨文还原周朝生活活动现象(《函谷门》原创)
算法·图搜索算法
努力努力再努力wz7 小时前
【Linux网络系列】:TCP 的秩序与策略:揭秘传输层如何从不可靠的网络中构建绝对可靠的通信信道
java·linux·开发语言·数据结构·c++·python·算法
deep_drink7 小时前
【论文精读(三)】PointMLP:大道至简,无需卷积与注意力的纯MLP点云网络 (ICLR 2022)
人工智能·pytorch·python·深度学习·3d·point cloud
njsgcs8 小时前
langchain+vlm示例
windows·python·langchain
勇气要爆发8 小时前
LangGraph 实战:10分钟打造带“人工审批”的智能体流水线 (Python + LangChain)
开发语言·python·langchain
jz_ddk8 小时前
[实战] 从冲击响应函数计算 FIR 系数
python·fpga开发·信号处理·fir·根升余弦·信号成形