使用Floyd算法求解两点间最短距离

Floyd算法

Floyd算法又称为Floyd-Warshell算法,其实Warshell算法是离散数学中求传递闭包的算法,两者的思想是一致的。Floyd算法是求解多源最短路时通常选用的算法,经过一次算法即可求出任意两点之间的最短距离,并且可以处理有负权边的情况(但无法处理负权环),算法的时间复杂度是 O ( n 3 ) O(n^3) O(n3),空间复杂度是 O ( n 2 ) O(n^2) O(n2)。

python 复制代码
import numpy as np


def floyd(adjacent_matrix, source, target):
   """
   :param adjacent_matrix: 图邻接矩阵
   :param source:  起点
   :param target:  终点
   :return: shortest_path
   """
   num_node = len(adjacent_matrix)

   # 计算
   """
   矩阵D记录顶点间的最小路径
   例如D[0][3]= 10,说明顶点0 到 3 的最短路径为10;
   矩阵P记录顶点间最小路径中的中转点
   例如P[0][3]= 1 说明,0 到 3的最短路径轨迹为:0 -> 1 -> 3。
   """
   distance = np.zeros(shape=(num_node, num_node), dtype=np.int_)
   path = np.zeros(shape=(num_node, num_node), dtype=np.int_)
   for v in range(num_node):
       for w in range(num_node):
           distance[v][w] = adjacent_matrix[v][w]
           path[v][w] = w

   # 弗洛伊德算法的核心部分
   for k in range(num_node):  # k为中间点
       for v in range(num_node):  # v 为起点
           for w in range(num_node):  # w为起点
               if distance[v][w] > (distance[v][k] + distance[k][w]):
                   distance[v][w] = distance[v][k] + distance[k][w]
                   path[v][w] = path[v][k]

   print(np.asarray(path))
   shortest_path = [source]
   k = path[source][target]
   while k != target:
       shortest_path.append(k)
       k = path[k][target]
   shortest_path.append(target)
   return shortest_path


if __name__ == "__main__":
   M = 1e6
   adjacent_matrix = [
       [0, 12, M, M, M, 16, 14],
       [12, 0, 10, M, M, 7, M],
       [M, 10, 0, 3, 5, 6, M],
       [M, M, 3, 0, 4, M, M],
       [M, M, 5, 4, 0, 2, 8],
       [16, 7, 6, M, 2, 0, 9],
       [14, M, M, M, 8, 9, 0],
   ]
   shortest_path = floyd(adjacent_matrix, 0, 3)
   print(shortest_path)
   # [0, 6, 3, M, M, M],
   # [6, 0, 2, 5, M, M],
   # [3, 2, 0, 3, 4, M],
   # [M, 5, 3, 0, 5, 3],
   # [M, M, 4, 5, 0, 5],
   # [M, M, M, 3, 5, 0]

适应场景

Floyd-Warshall算法由于其 O ( n 3 ) O(n^3) O(n3)的时间复杂度,适用于节点数比较少且图比较稠密的情况。对于边数较少的稀疏图,使用基于边的算法(如Dijkstra或Bellman-Ford)通常会更高效。

相关推荐
幽兰的天空26 分钟前
Python 中的模式匹配:深入了解 match 语句
开发语言·python
网易独家音乐人Mike Zhou4 小时前
【卡尔曼滤波】数据预测Prediction观测器的理论推导及应用 C语言、Python实现(Kalman Filter)
c语言·python·单片机·物联网·算法·嵌入式·iot
安静读书4 小时前
Python解析视频FPS(帧率)、分辨率信息
python·opencv·音视频
小二·5 小时前
java基础面试题笔记(基础篇)
java·笔记·python
小喵要摸鱼7 小时前
Python 神经网络项目常用语法
python
一念之坤8 小时前
零基础学Python之数据结构 -- 01篇
数据结构·python
wxl7812279 小时前
如何使用本地大模型做数据分析
python·数据挖掘·数据分析·代码解释器
NoneCoder9 小时前
Python入门(12)--数据处理
开发语言·python
LKID体10 小时前
Python操作neo4j库py2neo使用(一)
python·oracle·neo4j
小尤笔记10 小时前
利用Python编写简单登录系统
开发语言·python·数据分析·python基础