图像梯度与几种算子

"滤波器"也可以称为"卷积核","掩膜","算子"等。

1、Sobel算子

Sobel算子是一个3×3的卷积核,利用局部差分寻找边缘,计算得到梯度的近似值。x和y方向的Sobel算子分别为:

梯度有方向,对于一个图像,可以通过Sobel算子分别计算水平方向和垂直方向的偏导数的近似值。

计算水平方向偏导数的近似值

设原图像大小为,水平方向偏导数为:

计算像素点P5的梯度,需要利用邻域内的像素点,公式为:

即用像素点P5右侧像素值减去左侧像素值,距离P5近的点权重较大,为2;距离P5远的点权重较小,为1。

计算垂直方向偏导数的近似值

设原图像大小为,垂直方向偏导数为:

计算像素点P5的梯度,需要利用邻域内的像素点,公式为:

即用像素点P5下一行的像素值减去上一行的像素值,距离P5近的点权重较大,为2;距离P5远的点权重较小,为1。

2、Scharr算子

x和y方向的Scharr算子分别为:

Sobel算子与Scharr算子比较:Sobel算子的缺点是,当结构较小是,精确度不高,Scharr算子具有更高的精度。

3、Roberts算子

当图像边缘接近于正45°或负45°时,该算法处理效果更理想。其缺点是对边缘的定位不太准确,提取的边缘线条较粗。正45°和负45°方向的Roberts算子分别为:

4、Laplacian算子

Laplacian算子是一种二阶导数算子,具有旋转不变性,可以满足不同方向的边缘检测要求。通常其算子的系数之和需要为0。

例如,一个3×3的Laplacian算子如下:

对原图像使用Laplacian算子:

计算P5的近似导数值,如下:

相关推荐
后端小肥肠12 小时前
别再盲目抽卡了!Seedance 2.0 成本太高?教你用 Claude Code 100% 出片
人工智能·aigc·agent
每日新鲜事12 小时前
热销复盘:招商林屿缦岛203套售罄背后的客户逻辑分析
大数据·人工智能
Coder_Boy_12 小时前
基于SpringAI的在线考试系统-考试系统开发流程案例
java·数据库·人工智能·spring boot·后端
挖坑的张师傅13 小时前
对 AI Native 架构的一些思考
人工智能
LinQingYanga13 小时前
极客时间多模态大模型训练营毕业总结(2026年2月8日)
人工智能
pccai-vip13 小时前
过去24小时AI创业趋势分析
人工智能
SEO_juper13 小时前
AI SEO实战:整合传统技术与AI生成搜索的优化框架
人工智能·chatgpt·facebook·seo·geo·aeo
pp起床13 小时前
Gen_AI 补充内容 Logit Lens 和 Patchscopes
人工智能·深度学习·机器学习
方见华Richard13 小时前
自指-认知几何架构 可行性边界白皮书(务实版)
人工智能·经验分享·交互·原型模式·空间计算
冬奇Lab13 小时前
AI时代的"工具自由":我是如何进入细糠时代的
人工智能·ai编程