图像梯度与几种算子

"滤波器"也可以称为"卷积核","掩膜","算子"等。

1、Sobel算子

Sobel算子是一个3×3的卷积核,利用局部差分寻找边缘,计算得到梯度的近似值。x和y方向的Sobel算子分别为:

梯度有方向,对于一个图像,可以通过Sobel算子分别计算水平方向和垂直方向的偏导数的近似值。

计算水平方向偏导数的近似值

设原图像大小为,水平方向偏导数为:

计算像素点P5的梯度,需要利用邻域内的像素点,公式为:

即用像素点P5右侧像素值减去左侧像素值,距离P5近的点权重较大,为2;距离P5远的点权重较小,为1。

计算垂直方向偏导数的近似值

设原图像大小为,垂直方向偏导数为:

计算像素点P5的梯度,需要利用邻域内的像素点,公式为:

即用像素点P5下一行的像素值减去上一行的像素值,距离P5近的点权重较大,为2;距离P5远的点权重较小,为1。

2、Scharr算子

x和y方向的Scharr算子分别为:

Sobel算子与Scharr算子比较:Sobel算子的缺点是,当结构较小是,精确度不高,Scharr算子具有更高的精度。

3、Roberts算子

当图像边缘接近于正45°或负45°时,该算法处理效果更理想。其缺点是对边缘的定位不太准确,提取的边缘线条较粗。正45°和负45°方向的Roberts算子分别为:

4、Laplacian算子

Laplacian算子是一种二阶导数算子,具有旋转不变性,可以满足不同方向的边缘检测要求。通常其算子的系数之和需要为0。

例如,一个3×3的Laplacian算子如下:

对原图像使用Laplacian算子:

计算P5的近似导数值,如下:

相关推荐
白白糖2 小时前
深度学习 Pytorch 张量的索引、分片、合并以及维度调整
人工智能·pytorch·python·深度学习
白白糖2 小时前
深度学习 Pytorch 张量(Tensor)的创建和常用方法
人工智能·pytorch·python·深度学习
Noos_3 小时前
AI面试官
人工智能
lovelin+v175030409664 小时前
从零到一:构建高效稳定的电商数据API接口
大数据·网络·人工智能·爬虫·python
深度学习实战训练营4 小时前
基于机器学习的电信用户流失预测与数据分析可视化
人工智能·机器学习·数据分析
小白狮ww4 小时前
LTX-Video 高效视频生成模型,一键处理图片&文字
图像处理·人工智能·深度学习·机器学习·音视频·视频生成·ai 视频
⁢Easonhe5 小时前
《基于卷积神经网络的星图弱小目标检测》论文精读
人工智能·目标检测·cnn
码上飞扬5 小时前
深入理解循环神经网络(RNN):原理、应用与挑战
人工智能·rnn·深度学习
Zda天天爱打卡5 小时前
【机器学习实战入门】基于深度学习的乳腺癌分类
大数据·人工智能·深度学习·机器学习·分类·数据挖掘
T0uken5 小时前
【深度学习】Pytorch:CUDA 模型训练
人工智能·pytorch·深度学习