图像梯度与几种算子

"滤波器"也可以称为"卷积核","掩膜","算子"等。

1、Sobel算子

Sobel算子是一个3×3的卷积核,利用局部差分寻找边缘,计算得到梯度的近似值。x和y方向的Sobel算子分别为:

梯度有方向,对于一个图像,可以通过Sobel算子分别计算水平方向和垂直方向的偏导数的近似值。

计算水平方向偏导数的近似值

设原图像大小为,水平方向偏导数为:

计算像素点P5的梯度,需要利用邻域内的像素点,公式为:

即用像素点P5右侧像素值减去左侧像素值,距离P5近的点权重较大,为2;距离P5远的点权重较小,为1。

计算垂直方向偏导数的近似值

设原图像大小为,垂直方向偏导数为:

计算像素点P5的梯度,需要利用邻域内的像素点,公式为:

即用像素点P5下一行的像素值减去上一行的像素值,距离P5近的点权重较大,为2;距离P5远的点权重较小,为1。

2、Scharr算子

x和y方向的Scharr算子分别为:

Sobel算子与Scharr算子比较:Sobel算子的缺点是,当结构较小是,精确度不高,Scharr算子具有更高的精度。

3、Roberts算子

当图像边缘接近于正45°或负45°时,该算法处理效果更理想。其缺点是对边缘的定位不太准确,提取的边缘线条较粗。正45°和负45°方向的Roberts算子分别为:

4、Laplacian算子

Laplacian算子是一种二阶导数算子,具有旋转不变性,可以满足不同方向的边缘检测要求。通常其算子的系数之和需要为0。

例如,一个3×3的Laplacian算子如下:

对原图像使用Laplacian算子:

计算P5的近似导数值,如下:

相关推荐
涛神-DevExpress资深开发者6 分钟前
DevExpress V25.1 版本更新,开启控件AI新时代
人工智能·devexpress·v25.1·ai智能控件
Jamie2019010618 分钟前
健康孪生智能体使用起来复杂吗?医者AI技术核心与用户体验
人工智能
GLAB-Mary23 分钟前
AI会取代网络工程师吗?理解AI在网络安全中的角色
网络·人工智能·web安全
道可云30 分钟前
道可云人工智能每日资讯|浦东启动人工智能创新应用竞赛
人工智能·百度·ar·xr·deepseek
kyle~35 分钟前
目标检测在国防和政府的应用实例
人工智能·目标检测·计算机视觉
兮℡檬,1 小时前
torchvision中的数据使用
人工智能
Qdgr_1 小时前
价值实证:数字化转型标杆案例深度解析
大数据·数据库·人工智能
c++服务器开发1 小时前
一文详解Character AI:实用指南+ ChatGPT、Gemini对比分析
人工智能·chatgpt
hanniuniu131 小时前
AI时代API挑战加剧,API安全厂商F5护航企业数字未来
人工智能·安全
nicepainkiller2 小时前
anchor 智能合约案例3 之 journal
人工智能·智能合约·solana·anchor