图像梯度与几种算子

"滤波器"也可以称为"卷积核","掩膜","算子"等。

1、Sobel算子

Sobel算子是一个3×3的卷积核,利用局部差分寻找边缘,计算得到梯度的近似值。x和y方向的Sobel算子分别为:

梯度有方向,对于一个图像,可以通过Sobel算子分别计算水平方向和垂直方向的偏导数的近似值。

计算水平方向偏导数的近似值

设原图像大小为,水平方向偏导数为:

计算像素点P5的梯度,需要利用邻域内的像素点,公式为:

即用像素点P5右侧像素值减去左侧像素值,距离P5近的点权重较大,为2;距离P5远的点权重较小,为1。

计算垂直方向偏导数的近似值

设原图像大小为,垂直方向偏导数为:

计算像素点P5的梯度,需要利用邻域内的像素点,公式为:

即用像素点P5下一行的像素值减去上一行的像素值,距离P5近的点权重较大,为2;距离P5远的点权重较小,为1。

2、Scharr算子

x和y方向的Scharr算子分别为:

Sobel算子与Scharr算子比较:Sobel算子的缺点是,当结构较小是,精确度不高,Scharr算子具有更高的精度。

3、Roberts算子

当图像边缘接近于正45°或负45°时,该算法处理效果更理想。其缺点是对边缘的定位不太准确,提取的边缘线条较粗。正45°和负45°方向的Roberts算子分别为:

4、Laplacian算子

Laplacian算子是一种二阶导数算子,具有旋转不变性,可以满足不同方向的边缘检测要求。通常其算子的系数之和需要为0。

例如,一个3×3的Laplacian算子如下:

对原图像使用Laplacian算子:

计算P5的近似导数值,如下:

相关推荐
zhaomy202520 小时前
MCP技术让AI助手长出"眼睛":Web开发的革命性变化
人工智能
不做无法实现的梦~20 小时前
适合新手小白入门实现slam建图和路径规划的详细教程
人工智能·机器人·自动驾驶
热爱编程的小白白21 小时前
IPIDEA海外代理助力-Youtube视频AI领域选题数据获取实践
人工智能·音视频
高洁0121 小时前
面向强化学习的状态空间建模:RSSM的介绍和PyTorch实现(3)
人工智能·python·深度学习·神经网络·transformer
从零开始的奋豆21 小时前
计算机视觉(一):相机标定
计算机视觉
apocalypsx1 天前
深度学习-深度卷积神经网络AlexNet
人工智能·深度学习·cnn
leafff1231 天前
一文了解LLM应用架构:从Prompt到Multi-Agent
人工智能·架构·prompt
无风听海1 天前
神经网络之特征值与特征向量
人工智能·深度学习·神经网络
艾莉丝努力练剑1 天前
【C++:红黑树】深入理解红黑树的平衡之道:从原理、变色、旋转到完整实现代码
大数据·开发语言·c++·人工智能·红黑树
九章云极AladdinEdu1 天前
论文分享 | BARD-GS:基于高斯泼溅的模糊感知动态场景重建
人工智能·新视角合成·动态场景重建·运动模糊处理·3d高斯泼溅·模糊感知建模·真实世界数据集