Apache Kafka 事务详解

Apache Kafka 事务详解

Apache Kafka 是一个分布式流处理平台,主要用于实时数据的传输和处理。在现代的数据密集型应用中,事务性保证在数据传输和处理中的作用至关重要。本文将详细介绍 Kafka 的事务性支持,包括其基本概念、架构、使用方法以及相关代码示例和运行效果。

1. Kafka 事务简介

Kafka 的事务性支持在 0.11.0 版本中引入,目的是提供跨多个 topic 和 partition 的原子消息写入能力。这意味着事务消息要么全部写入成功,要么全部失败,从而确保数据的一致性和完整性。

Kafka 的事务特性主要用于以下场景:

  • 确保多个 topic 和 partition 的消息一致性
  • 实现端到端的 Exactly Once 语义(EOS)
  • 防止消息丢失或重复消费

2. Kafka 事务架构

Kafka 事务涉及三个主要组件:

  • 生产者(Producer):负责发送事务性消息。
  • 消费者(Consumer):负责消费事务性消息。
  • Kafka Broker:负责管理事务状态,确保事务的一致性。

在 Kafka 中,每个事务都有一个唯一的 Transactional ID,用于标识事务的生命周期。事务的状态通过 Broker 中的事务协调器(Transaction Coordinator)进行管理。

3. Kafka 事务使用方法

3.1 配置生产者

要使用 Kafka 事务性支持,首先需要配置生产者。下面是一个配置事务性生产者的示例:

java 复制代码
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;

import java.util.Properties;
import java.util.concurrent.ExecutionException;

public class TransactionalProducer {
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        Properties props = new Properties();
        props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
        props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer");
        props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer");
        props.put(ProducerConfig.TRANSACTIONAL_ID_CONFIG, "my-transactional-id");

        KafkaProducer<String, String> producer = new KafkaProducer<>(props);
        producer.initTransactions();

        try {
            producer.beginTransaction();
            producer.send(new ProducerRecord<>("my-topic", "key1", "value1")).get();
            producer.send(new ProducerRecord<>("my-topic", "key2", "value2")).get();
            producer.commitTransaction();
        } catch (ProducerFencedException | OutOfOrderSequenceException | AuthorizationException e) {
            producer.close();
            throw e;
        } catch (KafkaException e) {
            producer.abortTransaction();
        }
        producer.close();
    }
}
3.2 配置消费者

为了正确消费事务性消息,需要配置隔离级别(isolation.level)为"读已提交(read_committed)":

java 复制代码
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.ConsumerRecord;

import java.util.Collections;
import java.util.Properties;

public class TransactionalConsumer {
    public static void main(String[] args) {
        Properties props = new Properties();
        props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
        props.put(ConsumerConfig.GROUP_ID_CONFIG, "my-group");
        props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");
        props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");
        props.put(ConsumerConfig.ISOLATION_LEVEL_CONFIG, "read_committed");

        KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
        consumer.subscribe(Collections.singletonList("my-topic"));

        while (true) {
            ConsumerRecords<String, String> records = consumer.poll(100);
            for (ConsumerRecord<String, String> record : records) {
                System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
            }
        }
    }
}

4. 事务运行效果

4.1 生产者运行效果

当事务性生产者运行时,如果事务成功提交,我们可以看到以下输出:

Successfully sent message: key1, value1
Successfully sent message: key2, value2

如果事务失败并被回滚,我们将不会看到任何消息发送成功的日志。

4.2 消费者运行效果

事务性消费者只会读取已提交的事务消息。例如,如果我们发送了两条消息,但只提交了一条,那么消费者只会读取已提交的那条消息。

offset = 0, key = key1, value = value1

未提交的消息将不会被读取,从而确保数据的一致性。

5. 总结

Kafka 的事务性支持提供了一种确保消息一致性和完整性的方法,尤其适用于需要跨多个 topic 和 partition 进行原子写入的场景。通过配置事务性生产者和消费者,我们可以实现端到端的 Exactly Once 语义,防止消息丢失或重复消费。希望本文能帮助你更好地理解和使用 Kafka 的事务特性。

参考文献

相关推荐
Envyᥫᩣ4 小时前
C#语言:从入门到精通
开发语言·c#
IT技术分享社区10 小时前
C#实战:使用腾讯云识别服务轻松提取火车票信息
开发语言·c#·云计算·腾讯云·共识算法
△曉風殘月〆16 小时前
WPF MVVM入门系列教程(二、依赖属性)
c#·wpf·mvvm
逐·風18 小时前
unity关于自定义渲染、内存管理、性能调优、复杂物理模拟、并行计算以及插件开发
前端·unity·c#
m0_6569747421 小时前
C#中的集合类及其使用
开发语言·c#
九鼎科技-Leo1 天前
了解 .NET 运行时与 .NET 框架:基础概念与相互关系
windows·c#·.net
九鼎科技-Leo1 天前
什么是 ASP.NET Core?与 ASP.NET MVC 有什么区别?
windows·后端·c#·asp.net·mvc·.net
.net开发1 天前
WPF怎么通过RestSharp向后端发请求
前端·c#·.net·wpf
小乖兽技术1 天前
C#与C++交互开发系列(二十):跨进程通信之共享内存(Shared Memory)
c++·c#·交互·ipc
幼儿园园霸柒柒1 天前
第七章: 7.3求一个3*3的整型矩阵对角线元素之和
c语言·c++·算法·矩阵·c#·1024程序员节