【pytorch】模型集成

在集成学习中,我们会训练多个模型(通常称为「弱学习器」)解决相同的问题,并将它们结合起来以获得更好的结果。最重要的假设是:当弱模型被正确组合时,我们可以得到更精确和/或更鲁棒的模型。

常用的模型集成方法:

  1. bagging (自助聚合)
  2. boosting (提升法)
  3. stacking (堆叠法)

模型集成的一些主要形式:

  1. 投票集成
    在这种方法中,多个模型独立地进行训练,然后在预测时每个模型投票,最终的预测结果由多数投票决定。投票集成可以是硬投票(直接投票)或软投票(考虑预测概率)。
  2. 平均集成
    多个模型的预测结果取平均值,这种方法通常在回归问题中使用。对于分类问题,可以使用类别概率的平均值。
  3. 堆叠集成
    这是一种更复杂的集成方法,它涉及到在一个元模型(meta-model)的框架下结合多个基本模型。基本模型的预测结果成为元模型的输入。元模型通过学习如何结合基本模型的输出来产生最终的预测结果。
  4. 自适应集成
    这种方法动态地选择哪个模型对于给定输入更合适。这可以基于输入数据的特性,例如使用某个模型在某些特定子集上表现更好。
  5. Boosting
    Boosting是一种集成学习技术,其中弱分类器(通常是决策树)按顺序进行训练,每个新模型都试图纠正前一个模型的错误。最终的预测结果是所有模型的加权组合。
相关推荐
肾透侧视攻城狮几秒前
《深入PyTorch数据引擎:自定义数据封装、高效加载策略与多源融合实战》
人工智能·神经网络·自定义dataset·dataloader 加载数据·常见的图像预处理操作·图像数据增强·加载 mnist 数据集
勿忘初心91几秒前
pinocchio库使用教程(三)
python·机器人·动力学·运动学·pinocchio
看我干嘛!4 分钟前
python第四次作业
开发语言·python
疯狂的喵4 分钟前
使用Flask快速搭建轻量级Web应用
jvm·数据库·python
smj2302_796826527 分钟前
解决leetcode第3826题.最小分割分数问题
数据结构·python·算法·leetcode
zandy101122 分钟前
AI驱动全球销售商机管理:钉钉DingTalk A1的跨域管理智能解决方案
人工智能·百度·钉钉
福将~白鹿22 分钟前
Qwen3-VL-32B-Instruct vs Qwen2.5-VL-32B-Instruct 能力评分对比
人工智能
paul_chen2131 分钟前
openclaw配置教程(linux+局域网ollama)
人工智能·飞书
铁蛋AI编程实战31 分钟前
ChatWiki 开源 AI 文档助手搭建教程:多格式文档接入,打造专属知识库机器人
java·人工智能·python·开源
Loacnasfhia931 分钟前
【深度学习】【目标检测】YOLO11-C3k2-Faster-EMA模型实现草莓与番茄成熟度及病害识别系统
人工智能·深度学习·目标检测