【pytorch】模型集成

在集成学习中,我们会训练多个模型(通常称为「弱学习器」)解决相同的问题,并将它们结合起来以获得更好的结果。最重要的假设是:当弱模型被正确组合时,我们可以得到更精确和/或更鲁棒的模型。

常用的模型集成方法:

  1. bagging (自助聚合)
  2. boosting (提升法)
  3. stacking (堆叠法)

模型集成的一些主要形式:

  1. 投票集成
    在这种方法中,多个模型独立地进行训练,然后在预测时每个模型投票,最终的预测结果由多数投票决定。投票集成可以是硬投票(直接投票)或软投票(考虑预测概率)。
  2. 平均集成
    多个模型的预测结果取平均值,这种方法通常在回归问题中使用。对于分类问题,可以使用类别概率的平均值。
  3. 堆叠集成
    这是一种更复杂的集成方法,它涉及到在一个元模型(meta-model)的框架下结合多个基本模型。基本模型的预测结果成为元模型的输入。元模型通过学习如何结合基本模型的输出来产生最终的预测结果。
  4. 自适应集成
    这种方法动态地选择哪个模型对于给定输入更合适。这可以基于输入数据的特性,例如使用某个模型在某些特定子集上表现更好。
  5. Boosting
    Boosting是一种集成学习技术,其中弱分类器(通常是决策树)按顺序进行训练,每个新模型都试图纠正前一个模型的错误。最终的预测结果是所有模型的加权组合。
相关推荐
上不如老下不如小1 分钟前
2025年第七届全国高校计算机能力挑战赛初赛 Python组 编程题汇总
开发语言·python·算法
Q_Q5110082858 分钟前
python+django/flask的结合人脸识别和实名认证的校园论坛系统
spring boot·python·django·flask·node.js·php
Q_Q51100828510 分钟前
python+django/flask的选课系统与课程评价整合系统
spring boot·python·django·flask·node.js·php
charlie11451419115 分钟前
勇闯前后端Week2:后端基础——Flask API速览
笔记·后端·python·学习·flask·教程
i爱校对15 分钟前
爱校对团队服务全新升级
人工智能
KL1328815269321 分钟前
AI 介绍的东西大概率是不会错的,包括这款酷铂达 VGS耳机
人工智能
vigel199023 分钟前
人工智能的7大应用领域
人工智能
豐儀麟阁贵25 分钟前
8.2异常的抛出与捕捉
java·开发语言·python
人工智能训练39 分钟前
windows系统中的docker,xinference直接运行在容器目录和持载在宿主机目录中的区别
linux·服务器·人工智能·windows·ubuntu·docker·容器
interception1 小时前
爬虫js逆向,jsdom补环境,抖音,a_bogus
javascript·爬虫·python