【pytorch】模型集成

在集成学习中,我们会训练多个模型(通常称为「弱学习器」)解决相同的问题,并将它们结合起来以获得更好的结果。最重要的假设是:当弱模型被正确组合时,我们可以得到更精确和/或更鲁棒的模型。

常用的模型集成方法:

  1. bagging (自助聚合)
  2. boosting (提升法)
  3. stacking (堆叠法)

模型集成的一些主要形式:

  1. 投票集成
    在这种方法中,多个模型独立地进行训练,然后在预测时每个模型投票,最终的预测结果由多数投票决定。投票集成可以是硬投票(直接投票)或软投票(考虑预测概率)。
  2. 平均集成
    多个模型的预测结果取平均值,这种方法通常在回归问题中使用。对于分类问题,可以使用类别概率的平均值。
  3. 堆叠集成
    这是一种更复杂的集成方法,它涉及到在一个元模型(meta-model)的框架下结合多个基本模型。基本模型的预测结果成为元模型的输入。元模型通过学习如何结合基本模型的输出来产生最终的预测结果。
  4. 自适应集成
    这种方法动态地选择哪个模型对于给定输入更合适。这可以基于输入数据的特性,例如使用某个模型在某些特定子集上表现更好。
  5. Boosting
    Boosting是一种集成学习技术,其中弱分类器(通常是决策树)按顺序进行训练,每个新模型都试图纠正前一个模型的错误。最终的预测结果是所有模型的加权组合。
相关推荐
忧郁的橙子.6 小时前
26期_01_Pyhton基本语法
python
sunfove6 小时前
实战篇:用 Python 徒手实现模拟退火算法解决 TSP 问题
开发语言·python·模拟退火算法
小饼干超人6 小时前
详解向量数据库中的PQ算法(Product Quantization)
人工智能·算法·机器学习
砚边数影7 小时前
AI数学基础(一):线性代数核心,向量/矩阵运算的Java实现
java·数据库·人工智能·线性代数·矩阵·ai编程·金仓数据库
互联网科技看点7 小时前
诸葛io获认可:金融分析智能体赛道领航者
大数据·人工智能·金融
engchina7 小时前
自然语言转 SQL 并不是“魔法”
数据库·人工智能·sql·text2sql·nl2sql·自然语言转sql
我是菜鸟0713号7 小时前
Qt + Python 算法集成的一种低耦合实践:FastAPI 服务化方案
python·qt·fastapi
我是一只小青蛙8887 小时前
TraeCNIDE Python开发全流程指南
python
欣然~7 小时前
法律案例 PDF 批量转 TXT 工具代码
linux·前端·python
少林码僧8 小时前
2.30 传统行业预测神器:为什么GBDT系列算法在企业中最受欢迎
开发语言·人工智能·算法·机器学习·ai·数据分析