【pytorch】模型集成

在集成学习中,我们会训练多个模型(通常称为「弱学习器」)解决相同的问题,并将它们结合起来以获得更好的结果。最重要的假设是:当弱模型被正确组合时,我们可以得到更精确和/或更鲁棒的模型。

常用的模型集成方法:

  1. bagging (自助聚合)
  2. boosting (提升法)
  3. stacking (堆叠法)

模型集成的一些主要形式:

  1. 投票集成
    在这种方法中,多个模型独立地进行训练,然后在预测时每个模型投票,最终的预测结果由多数投票决定。投票集成可以是硬投票(直接投票)或软投票(考虑预测概率)。
  2. 平均集成
    多个模型的预测结果取平均值,这种方法通常在回归问题中使用。对于分类问题,可以使用类别概率的平均值。
  3. 堆叠集成
    这是一种更复杂的集成方法,它涉及到在一个元模型(meta-model)的框架下结合多个基本模型。基本模型的预测结果成为元模型的输入。元模型通过学习如何结合基本模型的输出来产生最终的预测结果。
  4. 自适应集成
    这种方法动态地选择哪个模型对于给定输入更合适。这可以基于输入数据的特性,例如使用某个模型在某些特定子集上表现更好。
  5. Boosting
    Boosting是一种集成学习技术,其中弱分类器(通常是决策树)按顺序进行训练,每个新模型都试图纠正前一个模型的错误。最终的预测结果是所有模型的加权组合。
相关推荐
中烟创新1 分钟前
烟草专卖文书生成智能体与法规案卷评查智能体获评“年度技术最佳实践奖”
人工智能
得一录9 分钟前
大模型中的多模态知识
人工智能·aigc
Github掘金计划29 分钟前
Claude Work 开源平替来了:让 AI 代理从“终端命令“变成“产品体验“
人工智能·开源
ghgxm52038 分钟前
Fastapi_00_学习方向 ——无编程基础如何用AI实现APP生成
人工智能·学习·fastapi
曲幽1 小时前
FastAPI多进程部署:定时任务重复执行?手把手教你用锁搞定
redis·python·fastapi·web·lock·works
余俊晖1 小时前
3秒实现语音克隆的Qwen3-TTS的Qwen-TTS-Tokenizer和方法架构概览
人工智能·语音识别
森屿~~1 小时前
AI 手势识别系统:踩坑与实现全记录 (PyTorch + MediaPipe)
人工智能·pytorch·python
运维行者_2 小时前
2026 技术升级,OpManager 新增 AI 网络拓扑与带宽预测功能
运维·网络·数据库·人工智能·安全·web安全·自动化
淬炼之火2 小时前
图文跨模态融合基础:大语言模型(LLM)
人工智能·语言模型·自然语言处理
Elastic 中国社区官方博客2 小时前
Elasticsearch:上下文工程 vs. 提示词工程
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索