【pytorch】模型集成

在集成学习中,我们会训练多个模型(通常称为「弱学习器」)解决相同的问题,并将它们结合起来以获得更好的结果。最重要的假设是:当弱模型被正确组合时,我们可以得到更精确和/或更鲁棒的模型。

常用的模型集成方法:

  1. bagging (自助聚合)
  2. boosting (提升法)
  3. stacking (堆叠法)

模型集成的一些主要形式:

  1. 投票集成
    在这种方法中,多个模型独立地进行训练,然后在预测时每个模型投票,最终的预测结果由多数投票决定。投票集成可以是硬投票(直接投票)或软投票(考虑预测概率)。
  2. 平均集成
    多个模型的预测结果取平均值,这种方法通常在回归问题中使用。对于分类问题,可以使用类别概率的平均值。
  3. 堆叠集成
    这是一种更复杂的集成方法,它涉及到在一个元模型(meta-model)的框架下结合多个基本模型。基本模型的预测结果成为元模型的输入。元模型通过学习如何结合基本模型的输出来产生最终的预测结果。
  4. 自适应集成
    这种方法动态地选择哪个模型对于给定输入更合适。这可以基于输入数据的特性,例如使用某个模型在某些特定子集上表现更好。
  5. Boosting
    Boosting是一种集成学习技术,其中弱分类器(通常是决策树)按顺序进行训练,每个新模型都试图纠正前一个模型的错误。最终的预测结果是所有模型的加权组合。
相关推荐
IT古董43 分钟前
【机器学习】机器学习的基本分类-强化学习-策略梯度(Policy Gradient,PG)
人工智能·机器学习·分类
centurysee44 分钟前
【最佳实践】Anthropic:Agentic系统实践案例
人工智能
mahuifa44 分钟前
混合开发环境---使用编程AI辅助开发Qt
人工智能·vscode·qt·qtcreator·编程ai
四口鲸鱼爱吃盐1 小时前
Pytorch | 从零构建GoogleNet对CIFAR10进行分类
人工智能·pytorch·分类
蓝天星空1 小时前
Python调用open ai接口
人工智能·python
睡觉狂魔er1 小时前
自动驾驶控制与规划——Project 3: LQR车辆横向控制
人工智能·机器学习·自动驾驶
jasmine s1 小时前
Pandas
开发语言·python
郭wes代码1 小时前
Cmd命令大全(万字详细版)
python·算法·小程序
scan7241 小时前
LILAC采样算法
人工智能·算法·机器学习
leaf_leaves_leaf1 小时前
win11用一条命令给anaconda环境安装GPU版本pytorch,并检查是否为GPU版本
人工智能·pytorch·python