【pytorch】模型集成

在集成学习中,我们会训练多个模型(通常称为「弱学习器」)解决相同的问题,并将它们结合起来以获得更好的结果。最重要的假设是:当弱模型被正确组合时,我们可以得到更精确和/或更鲁棒的模型。

常用的模型集成方法:

  1. bagging (自助聚合)
  2. boosting (提升法)
  3. stacking (堆叠法)

模型集成的一些主要形式:

  1. 投票集成
    在这种方法中,多个模型独立地进行训练,然后在预测时每个模型投票,最终的预测结果由多数投票决定。投票集成可以是硬投票(直接投票)或软投票(考虑预测概率)。
  2. 平均集成
    多个模型的预测结果取平均值,这种方法通常在回归问题中使用。对于分类问题,可以使用类别概率的平均值。
  3. 堆叠集成
    这是一种更复杂的集成方法,它涉及到在一个元模型(meta-model)的框架下结合多个基本模型。基本模型的预测结果成为元模型的输入。元模型通过学习如何结合基本模型的输出来产生最终的预测结果。
  4. 自适应集成
    这种方法动态地选择哪个模型对于给定输入更合适。这可以基于输入数据的特性,例如使用某个模型在某些特定子集上表现更好。
  5. Boosting
    Boosting是一种集成学习技术,其中弱分类器(通常是决策树)按顺序进行训练,每个新模型都试图纠正前一个模型的错误。最终的预测结果是所有模型的加权组合。
相关推荐
随心点儿9 分钟前
使用python 将多个docx文件合并为一个word
开发语言·python·多个word合并为一个
不学无术の码农13 分钟前
《Effective Python》第十三章 测试与调试——使用 Mock 测试具有复杂依赖的代码
开发语言·python
sleepybear111320 分钟前
在Ubuntu上从零开始编译并运行Home Assistant源码并集成HACS与小米开源的Ha Xiaomi Home
python·智能家居·小米·home assistant·米家·ha xiaomi home
纪伊路上盛名在25 分钟前
(鱼书)深度学习入门1:python入门
人工智能·python·深度学习
Shuai@28 分钟前
VILA-M3: Enhancing Vision-Language Models with Medical Expert Knowledge
人工智能·语言模型·自然语言处理
动亦定30 分钟前
AI与物联网(IoT)的融合
人工智能·物联网
夏末蝉未鸣0142 分钟前
python transformers笔记(TrainingArguments类)
python·自然语言处理·transformer
德育处主任Pro1 小时前
「py数据分析」04如何将 Python 爬取的数据保存为 CSV 文件
数据库·python·数据分析
咸鱼鲸1 小时前
【PyTorch】PyTorch中数据准备工作(AI生成)
人工智能·pytorch·python
停走的风1 小时前
二刷(李宏毅深度学习,醍醐灌顶,长刷长爽)
人工智能·深度学习