【pytorch】模型集成

在集成学习中,我们会训练多个模型(通常称为「弱学习器」)解决相同的问题,并将它们结合起来以获得更好的结果。最重要的假设是:当弱模型被正确组合时,我们可以得到更精确和/或更鲁棒的模型。

常用的模型集成方法:

  1. bagging (自助聚合)
  2. boosting (提升法)
  3. stacking (堆叠法)

模型集成的一些主要形式:

  1. 投票集成
    在这种方法中,多个模型独立地进行训练,然后在预测时每个模型投票,最终的预测结果由多数投票决定。投票集成可以是硬投票(直接投票)或软投票(考虑预测概率)。
  2. 平均集成
    多个模型的预测结果取平均值,这种方法通常在回归问题中使用。对于分类问题,可以使用类别概率的平均值。
  3. 堆叠集成
    这是一种更复杂的集成方法,它涉及到在一个元模型(meta-model)的框架下结合多个基本模型。基本模型的预测结果成为元模型的输入。元模型通过学习如何结合基本模型的输出来产生最终的预测结果。
  4. 自适应集成
    这种方法动态地选择哪个模型对于给定输入更合适。这可以基于输入数据的特性,例如使用某个模型在某些特定子集上表现更好。
  5. Boosting
    Boosting是一种集成学习技术,其中弱分类器(通常是决策树)按顺序进行训练,每个新模型都试图纠正前一个模型的错误。最终的预测结果是所有模型的加权组合。
相关推荐
摘星编程3 分钟前
Cursor Pair Programming:在前端项目里用 AI 快速迭代 UI 组件
前端·人工智能·ui·typescript·前端开发·cursorai
工业互联网专业12 分钟前
基于Spark的新冠肺炎疫情实时监控系统_django+spider
python·spark·django·vue·毕业设计·源码·课程设计
ZHOU_WUYI15 分钟前
门控MLP(Qwen3MLP)与稀疏混合专家(Qwen3MoeSparseMoeBlock)模块解析
人工智能·llm
Yh87020316 分钟前
2025年经济学专业女生必考证书指南:打造差异化竞争力
python
黄焖鸡能干四碗23 分钟前
信息系统安全保护措施文件方案
大数据·开发语言·人工智能·web安全·制造
BYSJMG25 分钟前
大数据毕业设计推荐:基于Spark的零售时尚精品店销售数据分析系统【Hadoop+python+spark】
大数据·hadoop·python·spark·django·课程设计
hallo12825 分钟前
学习机器学习能看哪些书籍
人工智能·深度学习·机器学习
中國龍在廣州35 分钟前
哈工大提出空间机器人复合框架,突破高精度轨迹跟踪
人工智能·深度学习·机器学习·计算机视觉·机器人
cetcht888836 分钟前
安徽某能源企业积极推进运维智能化转型,引入高压配电房机器人巡检系统
运维·人工智能·物联网·机器人·能源
健康有益科技1 小时前
AI驱动健康升级:新零售企业从“卖产品”到“卖健康”的转型路径
大数据·人工智能·健康医疗·零售