【pytorch】模型集成

在集成学习中,我们会训练多个模型(通常称为「弱学习器」)解决相同的问题,并将它们结合起来以获得更好的结果。最重要的假设是:当弱模型被正确组合时,我们可以得到更精确和/或更鲁棒的模型。

常用的模型集成方法:

  1. bagging (自助聚合)
  2. boosting (提升法)
  3. stacking (堆叠法)

模型集成的一些主要形式:

  1. 投票集成
    在这种方法中,多个模型独立地进行训练,然后在预测时每个模型投票,最终的预测结果由多数投票决定。投票集成可以是硬投票(直接投票)或软投票(考虑预测概率)。
  2. 平均集成
    多个模型的预测结果取平均值,这种方法通常在回归问题中使用。对于分类问题,可以使用类别概率的平均值。
  3. 堆叠集成
    这是一种更复杂的集成方法,它涉及到在一个元模型(meta-model)的框架下结合多个基本模型。基本模型的预测结果成为元模型的输入。元模型通过学习如何结合基本模型的输出来产生最终的预测结果。
  4. 自适应集成
    这种方法动态地选择哪个模型对于给定输入更合适。这可以基于输入数据的特性,例如使用某个模型在某些特定子集上表现更好。
  5. Boosting
    Boosting是一种集成学习技术,其中弱分类器(通常是决策树)按顺序进行训练,每个新模型都试图纠正前一个模型的错误。最终的预测结果是所有模型的加权组合。
相关推荐
暖光资讯9 分钟前
前行者获2025抖音最具影响力品牌奖,亮相上海ZFX装备前线展,引领外设行业“文化科技”新浪潮
人工智能·科技
guslegend11 分钟前
第3章:SpringAI进阶之会话记忆实战
人工智能
田姐姐tmner20 分钟前
Python切片
开发语言·python
陈橘又青30 分钟前
100% AI 写的开源项目三周多已获得 800 star 了
人工智能·后端·ai·restful·数据
t***316535 分钟前
爬虫学习案例3
爬虫·python·学习
中杯可乐多加冰1 小时前
逻辑控制案例详解|基于smardaten实现OA一体化办公系统逻辑交互
人工智能·深度学习·低代码·oa办公·无代码·一体化平台·逻辑控制
IT_陈寒1 小时前
Redis实战:5个高频应用场景下的性能优化技巧,让你的QPS提升50%
前端·人工智能·后端
AI小云1 小时前
【数据操作与可视化】Pandas数据处理-其他操作
python·pandas
龙智DevSecOps解决方案1 小时前
Perforce《2025游戏技术现状报告》Part 1:游戏引擎技术的广泛影响以及生成式AI的成熟之路
人工智能·unity·游戏引擎·游戏开发·perforce
大佬,救命!!!1 小时前
更换适配python版本直接进行机器学习深度学习等相关环境配置(非仿真环境)
人工智能·python·深度学习·机器学习·学习笔记·详细配置