【pytorch】模型集成

在集成学习中,我们会训练多个模型(通常称为「弱学习器」)解决相同的问题,并将它们结合起来以获得更好的结果。最重要的假设是:当弱模型被正确组合时,我们可以得到更精确和/或更鲁棒的模型。

常用的模型集成方法:

  1. bagging (自助聚合)
  2. boosting (提升法)
  3. stacking (堆叠法)

模型集成的一些主要形式:

  1. 投票集成
    在这种方法中,多个模型独立地进行训练,然后在预测时每个模型投票,最终的预测结果由多数投票决定。投票集成可以是硬投票(直接投票)或软投票(考虑预测概率)。
  2. 平均集成
    多个模型的预测结果取平均值,这种方法通常在回归问题中使用。对于分类问题,可以使用类别概率的平均值。
  3. 堆叠集成
    这是一种更复杂的集成方法,它涉及到在一个元模型(meta-model)的框架下结合多个基本模型。基本模型的预测结果成为元模型的输入。元模型通过学习如何结合基本模型的输出来产生最终的预测结果。
  4. 自适应集成
    这种方法动态地选择哪个模型对于给定输入更合适。这可以基于输入数据的特性,例如使用某个模型在某些特定子集上表现更好。
  5. Boosting
    Boosting是一种集成学习技术,其中弱分类器(通常是决策树)按顺序进行训练,每个新模型都试图纠正前一个模型的错误。最终的预测结果是所有模型的加权组合。
相关推荐
大模型真好玩1 分钟前
做题王者,实战拉跨!是时候给马斯克的Grok4泼盆冷水了!(Grok 4模型详细测评报告)
人工智能·python·mcp
九章云极AladdinEdu1 分钟前
华为昇腾NPU与NVIDIA CUDA生态兼容层开发实录:手写算子自动转换工具链(AST级代码迁移方案)
人工智能·深度学习·opencv·机器学习·华为·数据挖掘·gpu算力
羊八井2 分钟前
使用 Earth2Studio 和 AI 模型进行全球天气预测:太阳辐照
pytorch·python·nvidia
爱钓鱼的老毕登2 分钟前
2025编程革命:氛围编码崛起,开发者如何成为AI策展人?
人工智能·程序员·cursor
最懒的菜鸟6 分钟前
MinerU将PDF转成md文件,并分拣图片
人工智能·pdf
数字生命贾克斯6 分钟前
拆解飞书AI:知识管理不可替代,多维表格意外突围
人工智能
创小匠8 分钟前
创客匠人洞察:AI 时代创始人 IP 打造如何突破效率与价值的平衡
人工智能·网络协议·tcp/ip
京东零售技术8 分钟前
京东携手HarmonyOS SDK首发家电AR高精摆放功能
人工智能
向左转, 向右走ˉ12 分钟前
PyTorch随机擦除:提升模型抗遮挡能力
人工智能·pytorch·python·深度学习
feifeikon12 分钟前
SFT与Lora
人工智能·深度学习·机器学习