whisper+whisperx ASR加对齐

忘了怎么安装了,这里记录一下整理出来的类,不过这个识别容易出现幻觉,对齐也不是很准,比如说使用 large-v3 倒是能有一定的分句作用,但是每句最后一个字给的时间太短,这也表明了对齐不准。

python 复制代码
from chj.comm.pic import *

import json
import whisper
import whisperx
import gc

class Warp_whisper:
    def __init__(self, language="zh", device="cuda", compute_type="float32", model="large-v2" ):
        torch.backends.cudnn.enabled = False
        if not torch.cuda.is_available():
            device="cpu"
        dmodel="XXXXX/models/torch/whisper"
        self.asr_model=whisper.load_model(model, device, download_root=dmodel)
        self.txt_converter = None
        if model=="large-v2" and language=="zh":
            from opencc import OpenCC
            converter = OpenCC('t2s')
            self.txt_converter = converter
            self.prompt=None
        else:
            if language=="zh":
                self.prompt='以下是普通话的句子'
            else:
                self.prompt=None

        self.prompt=None

        self.language=language
        self.device=device
        self.align_model, self.align_metadata = whisperx.load_align_model(language_code=language, device=device)

    def do_asr_algin(self, fjson, fwav):
        audio = whisper.load_audio(fwav)
        result = self.asr_model.transcribe(audio, language=self.language, initial_prompt=self.prompt)
        #assert result["language"] == self.language
        result_segments = result["segments"]

        if self.txt_converter:
            for e in result_segments:
                e['text'] = converter.convert( e['text'] )
        result = whisperx.align(result_segments, self.align_model, self.align_metadata, audio, self.device, return_char_alignments=False)
        result=result["segments"]
        with open(fjson, "w") as fout:
            json.dump(result, fout, indent=4, ensure_ascii=False)

def f2_invoke():
    print("Doing... whisper align")
    basedir=sys.argv[1]
    din=f"{basedir}/audio_feats/wav16k"
    if not os.path.exists(din):
        print("no such dir", din)
        exit(1)
    dout=f"{basedir}/audio_feats/whisper_align"

	# model="large-v3
    cls_asr=Warp_whisper()
    chj_file.mkdir(dout)
    for fwav in tqdm( glob.glob(f"{din}/*.wav") ):
        nm = chj_file.get_nm(fwav)
        fnm=f"{dout}/{nm}.json"
        if os.path.isfile(fnm): continue
        cls_asr.do_asr_algin(fnm,fwav)
    print("Finished whisper align")
相关推荐
冰西瓜60016 小时前
从项目入手机器学习——鸢尾花分类
人工智能·机器学习·分类·数据挖掘
爱思德学术16 小时前
中国计算机学会(CCF)推荐学术会议-C(人工智能):IJCNN 2026
人工智能·神经网络·机器学习
偶信科技17 小时前
国产极细拖曳线列阵:16mm“水下之耳”如何撬动智慧海洋新蓝海?
人工智能·科技·偶信科技·海洋设备·极细拖曳线列阵
Java后端的Ai之路17 小时前
【神经网络基础】-神经网络学习全过程(大白话版)
人工智能·深度学习·神经网络·学习
庚昀◟17 小时前
用AI来“造AI”!Nexent部署本地智能体的沉浸式体验
人工智能·ai·nlp·持续部署
喜欢吃豆18 小时前
OpenAI Realtime API 深度技术架构与实现指南——如何实现AI实时通话
人工智能·语言模型·架构·大模型
数据分析能量站18 小时前
AI如何重塑个人生产力、组织架构和经济模式
人工智能
wscats19 小时前
Markdown 编辑器技术调研
前端·人工智能·markdown
AI科技星19 小时前
张祥前统一场论宇宙大统一方程的求导验证
服务器·人工智能·科技·线性代数·算法·生活
GIS数据转换器19 小时前
基于知识图谱的个性化旅游规划平台
人工智能·3d·无人机·知识图谱·旅游