yolov5 part2

two-stage (两阶段):Faster-rcnn Mask-Rcnn系列

one-stage (单阶段):YOLO系列

最核心的优势:速度非常快,适合实时监测任务。但是缺点也有,效果可能不好

速度较慢在2018年是

Mask R-CNN的原始实现能够在配备NVIDIA Tesla M40 GPU的5fps,但是效果很好,非常实用的通用框架maskrcnn

part1已经给出了这个

yolov1

这个思路很简单就是设定两个参数 h和w 然后得到一个预测框 计算和真实框的差别,再根据差别更新h和w,把你事先标好框的图片数据给yolo训练,yolo输出层会输出框来拟合标好的框,就是拟合与事先的框的偏移量,比如你最后特征图是13*13然后就每个像素生成三个框来拟合你真实的框

YOLO V1目标检测,看我就够了,看看b站【精读AI论文】YOLO V1目标检测,看我就够了_哔哩哔哩_bilibili

是针对每一个点都有两个候选框,根据IOU选择完候选框之后,通过置信度看其能不能算为一个物体,训练用的数据集一般是人工打上去的标签

发现网上yolov5视频主要是讲解原理,不讲解实战甚至安装

在github下载yolov5.zip,在prompt输入(base) C:\Users\eve>pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121,下载pytorch,

在一个单独的环境中,能使用pip就尽量使用pip,实在有问题的情况,再使用conda进行安装,不要来回混淆

·CUDA是否必须安装

·如果只需要训练、简单推理,则无需单独安装CUDA,直接在官网搜索对应的版本,通过pip安装即可

·如果需要编译、部署等,那么还是需要单独安装CUDA的,这部分大家可以自行百度

关键参数

  • ·weights:训练好的模型文件
  • ·source:检测的目标,可以是单张图片、文件夹、屏幕或者摄像头等
  • ·conf---thres:置信度阈值,越低框越多,越高框越少
  • ·iou---thres:IOU阈值,越低框越少,越少框越多

可以看到yolov5n是最小的,只要1.9M,速度也最快

输入python detect.py --weights yolov5s.pt即可检测那两个预定图片

python detect.py --weight yolov5s.pt -- source data /images/bus.jpg,这是对具体照片的检测

python detect.py --weight yolov5s.pt -- source screen,这是对电脑屏幕实时监测,持续循环,按ctrl+c即可暂停

还有其他方法,对应640*640图片尺寸变化

基于web的检测

基于torch.hub的检测方法,我们在jupyterlab

python 复制代码
import torch
#Model
model = torch.hub.load("./","yolov5s", source="local")#即为加载本地的模型 

# Images
img ="./data/images/zidane.jpg" 

#Inference
results=model(img)

#Results
results.show() 

数据集

python 复制代码
import cv2
import matplotlib.pyplot as plt   
#打开视频文件
video =cv2.videoCapture("./BVN.mp4") 
#读取一帧
ret, frame video. read()
plt.imshow(frame)#因为要在notebook里面显示图片,而不是弹出窗口

plt.imshow(cv2.cvtColor(frame,cv2.COLOR_BGR@RGB))

结合后循环30fps一抽

video =  cv2.Videocapture("./BVN.mp4") 
num =0  #计数器 
save step=30#同隔帧 
while True:
    ret, frame=video.read()
    if not ret:
        break 
    num+=1   
    if num%save_step == 0
         cv2.imwrite("./images/" +str (num) + ".jpg", frame)

这里没有用OpenCV进行读取显示,单纯的打开图片 

通过pip install labelimg下载标注工具,在prompt直接输入labelimg就打开了

这个框文件夹是把标注结果放在哪里,创建即可,把左边pasvoc的文件格式换成yolov5并且save,记得打开auto save自动保存

右键create box即可标注

模型训练

新建如下文件夹,把数据放入即可

what's your mission in shanghai!?

记住classes不要放

数据描述文件 ,修改train.py的439行

通常会出现一些问题,只好问ai了

相关推荐
szxinmai主板定制专家13 小时前
基于 ZYNQ ARM+FPGA+AI YOLOV4 的电网悬垂绝缘子缺陷检测系统的研究
arm开发·人工智能·嵌入式硬件·yolo·fpga开发
飞翔的佩奇17 小时前
【完整源码+数据集+部署教程】 水果叶片分割系统: yolov8-seg-dyhead
人工智能·yolo·计算机视觉·数据集·yolov8·yolo11·水果叶片分割系统
Hcoco_me1 天前
YOLO入门教程(番外):目标检测的一阶段学习方法
yolo·目标检测·学习方法
七芒星20231 天前
多目标识别YOLO :YOLOV3 原理
图像处理·人工智能·yolo·计算机视觉·目标跟踪·分类·聚类
深瞳智检1 天前
YOLO算法原理详解系列 第007期-YOLOv7 算法原理详解
人工智能·算法·yolo·目标检测·计算机视觉·目标跟踪
羊羊小栈1 天前
基于「YOLO目标检测 + 多模态AI分析」的光伏板缺陷检测分析系统(vue+flask+模型训练+AI算法)
vue.js·人工智能·yolo·目标检测·flask·毕业设计·大作业
B站计算机毕业设计之家2 天前
智慧交通项目:Python+PySide6 车辆检测系统 YOLOv8+OpenCV 自定义视频 自定义检测区域 (源码+文档)✅
大数据·python·opencv·yolo·智慧交通·交通·车流量
Mrs.Gril3 天前
目标检测:yolov7算法在RK3588上部署
算法·yolo·目标检测
格林威4 天前
工业视觉检测里的 “柔性” 是什么?
图像处理·人工智能·深度学习·yolo·计算机视觉·视觉检测
霍夫曼vx_helloworld73524 天前
yolov8模型在指针式表盘读数中的应用【代码+数据集+python环境+GUI系统】
大数据·python·yolo