给定一个 nn 个点 mm 条边的无向图,图中可能存在重边和自环,边权可能为负数。
求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible
。
给定一张边带权的无向图 G=(V,E)G=(V,E),其中 VV 表示图中点的集合,EE 表示图中边的集合,n=|V|n=|V|,m=|E|m=|E|。
由 VV 中的全部 nn 个顶点和 EE 中 n−1n−1 条边构成的无向连通子图被称为 GG 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 GG 的最小生成树。
输入格式
第一行包含两个整数 nn 和 mm。
接下来 mm 行,每行包含三个整数 u,v,wu,v,w,表示点 uu 和点 vv 之间存在一条权值为 ww 的边。
输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible
。
数据范围
1≤n≤5001≤n≤500,
1≤m≤1051≤m≤105,
图中涉及边的边权的绝对值均不超过 1000010000。
输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6
cpp
#include<bits/stdc++.h>
using namespace std;
const int N = 510,M=100010,INF=0x3f3f3f3f;
int n,m;
int g[N][N],dist[N];
bool st[N];
int prim()
{
memset(dist,0x3f,sizeof (dist));
dist[1]=0;
int res=0;
for(int i=0;i<n;i++)
{
int t=-1;
for(int j=1;j<=n;j++)
if(!st[j]&&(t==-1||dist[t]>dist[j]))
t=j;
if(dist[t]==INF) return INF;
st[t]=true;
res += dist[t];
for(int j=1;j<=n;j++)
dist[j]=min(dist[j],g[t][j]);
}
return res;
}
int main()
{
scanf("%d%d",&n,&m);
memset(g,0x3f,sizeof (g));
while(m--)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
g[a][b]=g[b][a]=min(g[a][b],c);
}
int res=prim();
if(res==INF) puts("impossible");
else printf("%d\n",res);
return 0;
}