NLP领域生成模型和判别模型举例以及对应的评价指标

在自然语言处理(NLP)领域,生成模型和判别模型各有其独特的用途和评价指标。以下是一些常见的生成模型和判别模型的例子以及它们的评价指标:

生成模型(Generative Models):

生成模型主要用于生成新的数据,类似于现有的数据。这些模型在文本生成、语言翻译、对话系统等方面应用广泛。

示例
  1. GPT(Generative Pre-trained Transformer):

    • 任务:文本生成、对话生成、摘要生成等。
    • 评价指标:
      • 困惑度(Perplexity): 测量模型对测试集预测的准确性,困惑度越低表示模型性能越好。
      • BLEU(Bilingual Evaluation Understudy): 主要用于机器翻译和文本生成,衡量生成文本与参考文本的相似度。
      • ROUGE(Recall-Oriented Understudy for Gisting Evaluation): 主要用于摘要生成,衡量生成摘要与参考摘要之间的重合度。
      • 人类评估(Human Evaluation): 通过人工评价生成文本的流畅性、连贯性和真实性。
  2. BERT(Bidirectional Encoder Representations from Transformers):

    • 任务:填充缺失单词(Masked Language Model),文本生成等。
    • 评价指标:
      • 困惑度(Perplexity)
      • MLM Accuracy(Masked Language Model Accuracy): 测量模型在填充缺失单词任务中的准确性。

判别模型(Discriminative Models):

判别模型主要用于分类和回归任务,这些模型在文本分类、情感分析、命名实体识别等方面应用广泛。

示例
  1. BERT(Bidirectional Encoder Representations from Transformers):

    • 任务:文本分类、情感分析、命名实体识别等。
    • 评价指标:
      • 准确率(Accuracy): 预测正确的样本数与总样本数之比。
      • 精确率(Precision): 正确预测的正类样本数与预测为正类的样本数之比。
      • 召回率(Recall): 正确预测的正类样本数与实际正类样本数之比。
      • F1分数(F1 Score): 精确率和召回率的调和平均数。
  2. TextCNN:

    • 任务:文本分类、情感分析等。
    • 评价指标:
      • 准确率(Accuracy)
      • 精确率(Precision)
      • 召回率(Recall)
      • F1分数(F1 Score)
相关推荐
BJ_Bonree1 分钟前
Bonree ONE 发布直通车| 如何利用核心链路,快速排查定位系统故障?
大数据·运维·人工智能
weixin_446260851 分钟前
八、微调后模型使用及效果验证-1
前端·人工智能·chrome·微调模型
ccLianLian7 分钟前
CorrCLIP
人工智能·计算机视觉
科士威传动8 分钟前
微型导轨的类型性能差异与场景适配需求
大数据·运维·人工智能·科技·机器人·自动化
Math_teacher_fan8 分钟前
第三篇:三角形问题详解
人工智能·学习·机器学习·几何学
视界先声8 分钟前
人工智能驱动林业转型,工业互联网专题活动助推产业升级
人工智能
~~李木子~~10 分钟前
法律RAG智能问答系统设计与实现
自然语言处理
围炉聊科技17 分钟前
GLM-4.6V:从视觉理解到行动执行
人工智能
百罹鸟22 分钟前
现如今的AI IDE:提示词策略与MCP Server使用感悟
前端·人工智能·mcp
乾元26 分钟前
OSPF / BGP 自动化设计与错误避坑清单—— 控制平面是“算出来的”,不是“敲出来的”
运维·网络·人工智能·平面·华为·自动化