NLP领域生成模型和判别模型举例以及对应的评价指标

在自然语言处理(NLP)领域,生成模型和判别模型各有其独特的用途和评价指标。以下是一些常见的生成模型和判别模型的例子以及它们的评价指标:

生成模型(Generative Models):

生成模型主要用于生成新的数据,类似于现有的数据。这些模型在文本生成、语言翻译、对话系统等方面应用广泛。

示例
  1. GPT(Generative Pre-trained Transformer):

    • 任务:文本生成、对话生成、摘要生成等。
    • 评价指标:
      • 困惑度(Perplexity): 测量模型对测试集预测的准确性,困惑度越低表示模型性能越好。
      • BLEU(Bilingual Evaluation Understudy): 主要用于机器翻译和文本生成,衡量生成文本与参考文本的相似度。
      • ROUGE(Recall-Oriented Understudy for Gisting Evaluation): 主要用于摘要生成,衡量生成摘要与参考摘要之间的重合度。
      • 人类评估(Human Evaluation): 通过人工评价生成文本的流畅性、连贯性和真实性。
  2. BERT(Bidirectional Encoder Representations from Transformers):

    • 任务:填充缺失单词(Masked Language Model),文本生成等。
    • 评价指标:
      • 困惑度(Perplexity)
      • MLM Accuracy(Masked Language Model Accuracy): 测量模型在填充缺失单词任务中的准确性。

判别模型(Discriminative Models):

判别模型主要用于分类和回归任务,这些模型在文本分类、情感分析、命名实体识别等方面应用广泛。

示例
  1. BERT(Bidirectional Encoder Representations from Transformers):

    • 任务:文本分类、情感分析、命名实体识别等。
    • 评价指标:
      • 准确率(Accuracy): 预测正确的样本数与总样本数之比。
      • 精确率(Precision): 正确预测的正类样本数与预测为正类的样本数之比。
      • 召回率(Recall): 正确预测的正类样本数与实际正类样本数之比。
      • F1分数(F1 Score): 精确率和召回率的调和平均数。
  2. TextCNN:

    • 任务:文本分类、情感分析等。
    • 评价指标:
      • 准确率(Accuracy)
      • 精确率(Precision)
      • 召回率(Recall)
      • F1分数(F1 Score)
相关推荐
落雨盛夏32 分钟前
深度学习|李哥考研4图片分类比较详细说明
人工智能·深度学习·分类
臭东西的学习笔记5 小时前
论文学习——机器学习引导的蛋白质工程
人工智能·学习·机器学习
大王小生5 小时前
说说CSV文件和C#解析csv文件的几种方式
人工智能·c#·csv·csvhelper·csvreader
m0_462605225 小时前
第G3周:CGAN入门|生成手势图像
人工智能
bubiyoushang8885 小时前
基于LSTM神经网络的短期风速预测实现方案
人工智能·神经网络·lstm
中烟创新5 小时前
烟草专卖文书生成智能体与法规案卷评查智能体获评“年度技术最佳实践奖”
人工智能
得一录6 小时前
大模型中的多模态知识
人工智能·aigc
Github掘金计划6 小时前
Claude Work 开源平替来了:让 AI 代理从“终端命令“变成“产品体验“
人工智能·开源
ghgxm5206 小时前
Fastapi_00_学习方向 ——无编程基础如何用AI实现APP生成
人工智能·学习·fastapi
余俊晖7 小时前
3秒实现语音克隆的Qwen3-TTS的Qwen-TTS-Tokenizer和方法架构概览
人工智能·语音识别