NLP领域生成模型和判别模型举例以及对应的评价指标

在自然语言处理(NLP)领域,生成模型和判别模型各有其独特的用途和评价指标。以下是一些常见的生成模型和判别模型的例子以及它们的评价指标:

生成模型(Generative Models):

生成模型主要用于生成新的数据,类似于现有的数据。这些模型在文本生成、语言翻译、对话系统等方面应用广泛。

示例
  1. GPT(Generative Pre-trained Transformer):

    • 任务:文本生成、对话生成、摘要生成等。
    • 评价指标:
      • 困惑度(Perplexity): 测量模型对测试集预测的准确性,困惑度越低表示模型性能越好。
      • BLEU(Bilingual Evaluation Understudy): 主要用于机器翻译和文本生成,衡量生成文本与参考文本的相似度。
      • ROUGE(Recall-Oriented Understudy for Gisting Evaluation): 主要用于摘要生成,衡量生成摘要与参考摘要之间的重合度。
      • 人类评估(Human Evaluation): 通过人工评价生成文本的流畅性、连贯性和真实性。
  2. BERT(Bidirectional Encoder Representations from Transformers):

    • 任务:填充缺失单词(Masked Language Model),文本生成等。
    • 评价指标:
      • 困惑度(Perplexity)
      • MLM Accuracy(Masked Language Model Accuracy): 测量模型在填充缺失单词任务中的准确性。

判别模型(Discriminative Models):

判别模型主要用于分类和回归任务,这些模型在文本分类、情感分析、命名实体识别等方面应用广泛。

示例
  1. BERT(Bidirectional Encoder Representations from Transformers):

    • 任务:文本分类、情感分析、命名实体识别等。
    • 评价指标:
      • 准确率(Accuracy): 预测正确的样本数与总样本数之比。
      • 精确率(Precision): 正确预测的正类样本数与预测为正类的样本数之比。
      • 召回率(Recall): 正确预测的正类样本数与实际正类样本数之比。
      • F1分数(F1 Score): 精确率和召回率的调和平均数。
  2. TextCNN:

    • 任务:文本分类、情感分析等。
    • 评价指标:
      • 准确率(Accuracy)
      • 精确率(Precision)
      • 召回率(Recall)
      • F1分数(F1 Score)
相关推荐
Blossom.1183 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
DFminer4 小时前
【LLM】fast-api 流式生成测试
人工智能·机器人
郄堃Deep Traffic4 小时前
机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
人工智能·机器学习·回归·城市规划
GIS小天5 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年6月7日第101弹
人工智能·算法·机器学习·彩票
阿部多瑞 ABU5 小时前
主流大语言模型安全性测试(三):阿拉伯语越狱提示词下的表现与分析
人工智能·安全·ai·语言模型·安全性测试
cnbestec5 小时前
Xela矩阵三轴触觉传感器的工作原理解析与应用场景
人工智能·线性代数·触觉传感器
不爱写代码的玉子5 小时前
HALCON透视矩阵
人工智能·深度学习·线性代数·算法·计算机视觉·矩阵·c#
sbc-study6 小时前
PCDF (Progressive Continuous Discrimination Filter)模块构建
人工智能·深度学习·计算机视觉
EasonZzzzzzz6 小时前
计算机视觉——相机标定
人工智能·数码相机·计算机视觉
猿小猴子6 小时前
主流 AI IDE 之一的 Cursor 介绍
ide·人工智能·cursor