NLP领域生成模型和判别模型举例以及对应的评价指标

在自然语言处理(NLP)领域,生成模型和判别模型各有其独特的用途和评价指标。以下是一些常见的生成模型和判别模型的例子以及它们的评价指标:

生成模型(Generative Models):

生成模型主要用于生成新的数据,类似于现有的数据。这些模型在文本生成、语言翻译、对话系统等方面应用广泛。

示例
  1. GPT(Generative Pre-trained Transformer):

    • 任务:文本生成、对话生成、摘要生成等。
    • 评价指标:
      • 困惑度(Perplexity): 测量模型对测试集预测的准确性,困惑度越低表示模型性能越好。
      • BLEU(Bilingual Evaluation Understudy): 主要用于机器翻译和文本生成,衡量生成文本与参考文本的相似度。
      • ROUGE(Recall-Oriented Understudy for Gisting Evaluation): 主要用于摘要生成,衡量生成摘要与参考摘要之间的重合度。
      • 人类评估(Human Evaluation): 通过人工评价生成文本的流畅性、连贯性和真实性。
  2. BERT(Bidirectional Encoder Representations from Transformers):

    • 任务:填充缺失单词(Masked Language Model),文本生成等。
    • 评价指标:
      • 困惑度(Perplexity)
      • MLM Accuracy(Masked Language Model Accuracy): 测量模型在填充缺失单词任务中的准确性。

判别模型(Discriminative Models):

判别模型主要用于分类和回归任务,这些模型在文本分类、情感分析、命名实体识别等方面应用广泛。

示例
  1. BERT(Bidirectional Encoder Representations from Transformers):

    • 任务:文本分类、情感分析、命名实体识别等。
    • 评价指标:
      • 准确率(Accuracy): 预测正确的样本数与总样本数之比。
      • 精确率(Precision): 正确预测的正类样本数与预测为正类的样本数之比。
      • 召回率(Recall): 正确预测的正类样本数与实际正类样本数之比。
      • F1分数(F1 Score): 精确率和召回率的调和平均数。
  2. TextCNN:

    • 任务:文本分类、情感分析等。
    • 评价指标:
      • 准确率(Accuracy)
      • 精确率(Precision)
      • 召回率(Recall)
      • F1分数(F1 Score)
相关推荐
yzx99101313 分钟前
生活在数字世界:一份人人都能看懂的网络安全生存指南
运维·开发语言·网络·人工智能·自动化
许泽宇的技术分享1 小时前
LangGraph深度解析:构建下一代智能Agent的架构革命——从Pregel到现代AI工作流的技术飞跃
人工智能·架构
乔巴先生241 小时前
LLMCompiler:基于LangGraph的并行化Agent架构高效实现
人工智能·python·langchain·人机交互
静西子2 小时前
LLM大语言模型部署到本地(个人总结)
人工智能·语言模型·自然语言处理
cxr8283 小时前
基于Claude Code的 规范驱动开发(SDD)指南
人工智能·hive·驱动开发·敏捷流程·智能体
Billy_Zuo3 小时前
人工智能机器学习——决策树、异常检测、主成分分析(PCA)
人工智能·决策树·机器学习
小王爱学人工智能3 小时前
OpenCV的图像金字塔
人工智能·opencv·计算机视觉
北京地铁1号线4 小时前
Qwen-VL(阿里通义千问视觉语言模型)模型架构和损失函数介绍
人工智能·语言模型·自然语言处理
阿豪34 小时前
2025 年职场转行突围:除实习外,这些硬核证书让你的简历脱颖而出(纯经验分享)
大数据·人工智能·经验分享·科技·信息可视化·产品经理