[flink]部署模式

部署模式

在一些应用场景中,对于集群资源分配和占用的方式,可能会有特定的需求。 Flink为各种场景提供了不同的部署模式,主要有以下三种:会话模式 (Session Mode)、单作业模式 (Per-Job Mode)、应用模式(Application Mode)。

它们的区别主要在于:集群的生命周期(创建和停止集群的时间)以及资源的分配方式(一个独享还是多人共享);以及应用的main方法到底在哪里执行------客户端(Client)还是JobManager。

一、会话模式

会话模式最符合常规思维。我们需要先启动一个集群,保持一个会话,在这个会话中通过客户端提交作业。集群启动时所有资源就都已经确定,所以所有提交的作业会竞争集群中的资源。

会话模式比较适合于单个规模小、执行时间短的大量作业。

二、应用模式

会话模式和单作业模式下,应用的代码都是在客户端上执行的 ,然后由客户端提交给JobManager,但是这种方式客户端需要占用大量网络带宽,去下载依赖和把二进制数据发送给JobManager;加上很多情况下我们提交作业用的是同一个客户端,就会加重客户端所在节点的资源消耗

所以解决办法是,我们不要客户端了,直接把应用提交到JobManager上运行。而这也就代表着,我们需要为每一个提交的应用单独启动一个JobManager,也就是创建一个集群。这个JobManager只为执行这一个应用而存在,执行结束后JobManager也就关闭了,这就是所谓的应用模式。

应用模式与单作业模式,都是提交作业后才创建集群;单作业模式是通过客户端来提交的,客户端解析出的每一个作业对应一个集群;而应用模式下,是直接由JobManager执行应用程序的。

三、单作业模式(官网已经标记为过时) 应用模式解决了单作业模式的痛点

会话模式因为资源共享会导致很多问题,所以为了更好地隔离资源,我们可以考虑为每个提交的作业启动一个集群,这就是所谓的单作业(Per-Job)模式。

作业完成后,集群就会关闭,所有资源也会释放。

这些特性使得单作业模式在生产环境运行更加稳定,所以是实际应用的首选模式

更需要注意的是,Flink本身无法直接这样运行,所以单作业模式一般需要借助一些资源管理框架来启动集群,如yarn、kubernetes(K8S)

相关推荐
qq_262496091 天前
Elasticsearch 核心参数调优指南
大数据·elasticsearch
OpenCSG1 天前
AgenticOps 如何重构企业 AI 的全生命周期管理体系
大数据·人工智能·深度学习
阿里云大数据AI技术1 天前
漫画说:为什么你的“增量计算”越跑越慢?——90%的实时数仓团队都踩过的坑,藏在这几格漫画里
大数据·人工智能
电商API_180079052471 天前
批量获取电商商品数据的主流技术方法全解析
大数据·数据库·人工智能·数据分析·网络爬虫
Zoey的笔记本1 天前
敏捷与稳定并行:Scrum看板+BPM工具选型指南
大数据·前端·数据库·python·低代码
俊哥大数据1 天前
【项目7】 基于Flink新闻资讯大数据推荐系统
大数据·flink
Coder_Boy_1 天前
基于SpringAI的在线考试系统-企业级软件研发工程应用规范实现细节
大数据·开发语言·人工智能·spring boot
Hello.Reader1 天前
Flink State Processor API 读写/修复 Savepoint,把“状态”当成可查询的数据
大数据·flink
木风小助理1 天前
Elasticsearch生产环境最佳实践指南
大数据·elasticsearch·搜索引擎
hg01181 天前
筑梦非洲:中国电建以实干绘就中非合作新图景
大数据