[flink]部署模式

部署模式

在一些应用场景中,对于集群资源分配和占用的方式,可能会有特定的需求。 Flink为各种场景提供了不同的部署模式,主要有以下三种:会话模式 (Session Mode)、单作业模式 (Per-Job Mode)、应用模式(Application Mode)。

它们的区别主要在于:集群的生命周期(创建和停止集群的时间)以及资源的分配方式(一个独享还是多人共享);以及应用的main方法到底在哪里执行------客户端(Client)还是JobManager。

一、会话模式

会话模式最符合常规思维。我们需要先启动一个集群,保持一个会话,在这个会话中通过客户端提交作业。集群启动时所有资源就都已经确定,所以所有提交的作业会竞争集群中的资源。

会话模式比较适合于单个规模小、执行时间短的大量作业。

二、应用模式

会话模式和单作业模式下,应用的代码都是在客户端上执行的 ,然后由客户端提交给JobManager,但是这种方式客户端需要占用大量网络带宽,去下载依赖和把二进制数据发送给JobManager;加上很多情况下我们提交作业用的是同一个客户端,就会加重客户端所在节点的资源消耗

所以解决办法是,我们不要客户端了,直接把应用提交到JobManager上运行。而这也就代表着,我们需要为每一个提交的应用单独启动一个JobManager,也就是创建一个集群。这个JobManager只为执行这一个应用而存在,执行结束后JobManager也就关闭了,这就是所谓的应用模式。

应用模式与单作业模式,都是提交作业后才创建集群;单作业模式是通过客户端来提交的,客户端解析出的每一个作业对应一个集群;而应用模式下,是直接由JobManager执行应用程序的。

三、单作业模式(官网已经标记为过时) 应用模式解决了单作业模式的痛点

会话模式因为资源共享会导致很多问题,所以为了更好地隔离资源,我们可以考虑为每个提交的作业启动一个集群,这就是所谓的单作业(Per-Job)模式。

作业完成后,集群就会关闭,所有资源也会释放。

这些特性使得单作业模式在生产环境运行更加稳定,所以是实际应用的首选模式

更需要注意的是,Flink本身无法直接这样运行,所以单作业模式一般需要借助一些资源管理框架来启动集群,如yarn、kubernetes(K8S)

相关推荐
B站_计算机毕业设计之家24 分钟前
计算机毕业设计:Python农业数据可视化分析系统 气象数据 农业生产 粮食数据 播种数据 爬虫 Django框架 天气数据 降水量(源码+文档)✅
大数据·爬虫·python·机器学习·信息可视化·课程设计·农业
Apache Flink2 小时前
Flink Agents 0.1.0 发布公告
大数据·flink
潘达斯奈基~4 小时前
在使用spark的applyInPandas方法过程中,遇到类型冲突问题如何解决
大数据·笔记
火星资讯5 小时前
腾多多数字零售模式:从成本转嫁到全生态共赢的破局实践
大数据
望获linux5 小时前
【实时Linux实战系列】实时 Linux 的自动化基准测试框架
java·大数据·linux·运维·网络·elasticsearch·搜索引擎
金宗汉6 小时前
《宇宙递归拓扑学:基于自指性与拓扑流形的无限逼近模型》
大数据·人工智能·笔记·算法·观察者模式
直有两条腿6 小时前
【数据迁移】HBase Bulkload批量加载原理
大数据·数据库·hbase
Joy T6 小时前
海南蓝碳:生态财富与科技驱动的新未来
大数据·人工智能·红树林·海南省·生态区建设
风清再凯7 小时前
01-ELK安装ES,ES-head
大数据·elk·elasticsearch
Guheyunyi7 小时前
风险感知中枢:监测预警系统的架构与核心
大数据·运维·安全·重构·架构·自动化