AI用Alice_split_toolset切割音频的采样率

AI用Alice_split_toolset切割音频的采样率

目录

AI用Alice_split_toolset切割音频的采样率

[一、Sample rate采样率的概念](#一、Sample rate采样率的概念)

二、Alice_split_toolset切割音频的参数

2.1、字符串参数--input_folder输入文件夹路径

2.2、字符串参数--output_folder输出文件夹路径

2.3、字符串参数--sample_rate声音的采样率

2.4、动作参数--mono转化为单声道

2.5、动作参数--use_subtitle_as_name使用字幕所在的.wav文件名作为文件名

三、本期关联技术博文


一、Sample rate采样率的概念

声音的Sample rate(‌采样率)‌是指每秒从连续信号中提取并组成离散信号的采样个数,‌用赫兹(Hz)来表示。‌ 采样率是音频处理中的一个重要参数,‌它直接关系到音频的质量和数据量的大小。‌采样频率的高低决定了音频信号的还原程度,‌即音频的质量。‌采样频率越高,‌音频质量越高 ,‌但同时数据量也会增大 。‌为了保证声音不失真,‌采样频率需要不低于音频信号最高频率的两倍。‌人耳能听到的频率范围大约在20Hz到20kHz之间 ,‌因此为了保证声音质量 ,‌采样频率通常在40kHz以上。‌常见的采样率包括11025Hz、‌22050Hz、‌24000Hz、‌44100Hz和48000Hz等。‌其中,‌44100Hz是理论上的CD音质界限,‌而48000Hz则更加精确一些。

二、Alice_split_toolset切割音频的参数

python 复制代码
if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Split WAVs based on SRT timings in a folder")
    parser.add_argument("--input_folder", type=str, default="input", help="Path to the input folder containing SRT and WAV files")
    parser.add_argument("--output_folder", type=str, default="output", help="Output folder path")
    parser.add_argument("--sample_rate", type=int, default=44100, help="Sample rate for output WAVs")
    parser.add_argument("--mono", action="store_true", help="Convert to mono")
    parser.add_argument("--use_subtitle_as_name", action="store_true", help="Use subtitle as filename")

2.1、字符串参数--input_folder输入文件夹路径

--input_folder input

请不要带中文,原始.wav文件及其字幕文件.srt所在的目录。

2.2、字符串参数--output_folder输出文件夹路径

--output_folder output

请不要带中文,切割后的.wav文件及其.list列表文件所在的目录。

2.3、字符串参数--sample_rate声音的采样率

--sample_rate 48000

44100Hz是理论上的CD音质界限,也是默认值。

而48000Hz则更加精确,通常被更多的音频输出设备软件,标识为DVD音质界限 。会将原始录制的人声中,人的**"嗓音"**也识别和还原出来。

输出设备:

输入设备:

2.4、动作参数--mono转化为单声道

--mono

默认值。不要混响和声音通道的,纯粹的人声。

2.5、动作参数--use_subtitle_as_name使用字幕所在的.wav文件名作为文件名

--use_subtitle_as_name

默认值。

三、本期关联技术博文

《comfyUI-MuseTalk的参数设置》

《ComfyUI-MuseTalk部署依赖mmcv》
《Win10环境将Docker部署到非系统盘》

相关推荐
MobiusStack5 分钟前
Cursor团队最新文章解读丨动态上下文发现,重新定义AI记忆
人工智能
Rui_Freely18 分钟前
Vins-Fusion之 相机—IMU在线标定(十一)
人工智能·算法·计算机视觉
沛沛老爹20 分钟前
Web开发者5分钟上手:Agent Skills环境搭建与基础使用实战
java·人工智能·llm·llama·rag·agent skills
DeepFlow 零侵扰全栈可观测29 分钟前
3分钟定位OA系统GC瓶颈:DeepFlow全栈可观测平台实战解析
大数据·运维·人工智能·云原生·性能优化
想用offer打牌40 分钟前
一站式讲清Spring AI Alibaba的OverAllState和RunnableConfig
人工智能·架构·github
生成论实验室1 小时前
生成论之基:“阴阳”作为元规则的重构与证成——基于《易经》与《道德经》的古典重诠与现代显象
人工智能·科技·神经网络·算法·架构
kaizq1 小时前
AI-MCP本地流媒音频服务器设计与CherryStudio部署应用
音视频·cherrystudio·fastmcp·streamablehttp·本地mcp流媒服务器
数据分享者1 小时前
对话对齐反馈数据集:12000+高质量人类-助手多轮对话用于RLHF模型训练与评估-人工智能-大语言模型对齐-人类反馈强化学习-训练符合人类期望的对话模型
人工智能·语言模型·自然语言处理
Java后端的Ai之路1 小时前
【人工智能领域】- 卷积神经网络(CNN)深度解析
人工智能·神经网络·cnn
_清欢l1 小时前
Dify+test2data实现自然语言查询数据库
数据库·人工智能·openai