论文笔记: 视频关键帧抽取相关工作

2024-08-06,星期二,北京,晴

今天来看视频关键帧抽取主题。随着最近Sora文生视频的火热,视频相关的数据获得逐渐变得重要起来。这也就涉及到提取视频关键帧的问题。

从文本生成视频,我们拆分来看,一般流程是先将文本扩写生成几部分,之后将每部分生成对应的图像,这步的图像就可以看做视频的关键帧;最后由这一些关键帧扩展为完整的视频。

而视频关键帧抽取任务则是上述过程的反向操作,目的是构造训练数据使用。目前互联网上完整视频最多。而有对应关键帧的视频数据集则少之又少。

我们主要来看一篇2020年的综述文章Keyframe Extraction Techniques: A Review(https://elektrika.utm.my/index.php/ELEKTRIKA_Journal/article/download/221/136),该工作中系统总结了视频关键帧抽取部分的常用流程和方法。主要有以下几步来做:

其中,Keyframe Extraction Process主要有Sampling-Based、Shot-Based、Clustering-Based和其他方法

Sampling-Based:

  • 不考虑视频内容,从视频帧中,均匀或者随机采样即可。直白来说就是每隔几帧采样一次。
  • 缺点是:sample所得帧并不一定代表整个video,而且会有大量内容相似的帧。

Shot-Based:

  • 该方法分为两步:首先检测镜头边缘或转换卡点,将video分成小的shots,之后再做关键帧提取,通常选择小的shots的第一帧和最后一帧最为关键帧。因为这两帧图像,很确定有镜头变换的

Clustering-Based:

  • 聚类相似的视频帧图像点,在每一个cluster中,挑选距离cluster最近的作为关键帧。
  • 缺点是:事先确定cluster数量比较困难

关键帧提取算法评估指标:

Compress ratio:
C R = ( 1 − N k N f ) × 100 % CR = (1 - \frac{N_{k}}{N_{f}}) \times 100\% CR=(1−NfNk)×100%
N f N_{f} Nf: 视频总帧数

N k N_{k} Nk: 提取的关键帧数目

Precision and Recall:
P r e c i s i o n = N a N k × 100 % R e c a l l = N a N a + N m × 100 % Precision = \frac{N_{a}}{N_{k}} \times 100\% \\ Recall = \frac{N_{a}}{N_{a} + N_{m}} \times 100\% Precision=NkNa×100%Recall=Na+NmNa×100%

N a N_{a} Na: 准确的keyframes数
N k N_{k} Nk: 提取得到的keyframes数目
N m N_{m} Nm: 丢失的key frame数目

F-Measure:
F = 2 × p r e c i s i o n i × r e c a l l p r e c i s i o n + r e c a l l F = 2 \times \frac{precisioni \times recall}{precision + recall} F=2×precision+recallprecisioni×recall

Computational Time:

提取关键帧所用时间

相关开源仓库

相关推荐
闲看云起18 小时前
Bert:从“读不懂上下文”的AI,到真正理解语言
论文阅读·人工智能·深度学习·语言模型·自然语言处理·bert
闲看云起1 天前
论文阅读《LIMA:Less Is More for Alignment》
论文阅读·人工智能·语言模型·自然语言处理
0x2111 天前
[论文阅读]Progent: Programmable Privilege Control for LLM Agents
论文阅读
红苕稀饭6661 天前
DyCoke论文阅读
论文阅读
飞机火车巴雷特1 天前
【论文阅读】DSPy-based neural-symbolic pipeline to enhance spatial reasoning in LLMs
论文阅读·大模型·空间推理·答案集编程
末世灯光2 天前
论文阅读---CARLA:用于时间序列异常检测的自监督对比表示学习方法
论文阅读·时序数据
张较瘦_2 天前
[论文阅读] AI | PynguinML——破解ML库自动化测试难题,覆盖率最高提升63.9%
论文阅读·人工智能
*Lisen2 天前
论文笔记 -《MUON IS SCALABLE FOR LLM TRAINING》
论文阅读
清风吹过3 天前
LSTM新架构论文分享6:LSTM+Transformer融合
论文阅读·人工智能·深度学习·神经网络·lstm·transformer
DuHz3 天前
汽车角雷达波形设计与速度模糊解决方法研究——论文阅读
论文阅读·物联网·算法·汽车·信息与通信·信号处理