深度学习常用语句for param in params问题:为什么修改param之后,params对应元素也随之改变?

python 复制代码
def sgd(params, lr, batch_size):  #@save
    """小批量随机梯度下降"""
    with torch.no_grad():
        for param in params:
            param -= lr * param.grad / batch_size
            param.grad.zero_()

sgd([w, b], lr, batch_size)

上述代码中,param遍历params的所有元素,并进行sgd梯度下降,但是其仅仅对param进行修改,为何params元素会随之改变?

于是我进行实验,发现无论是最简单的数组还是np.array(ndarray格式),都是只修改了param而不修改params,如下图所示:

于是询问copilot:

然而为何源码中的params会改变?继续询问:

继续:

由 你 发送:

为什么一个是副本,一个是引用,两者有什么区别,如何判断

由 Copilot 发送:

这是一个很好的问题!在 Python 中,变量是如何传递的取决于它们的类型和使用方式。让我们详细解释一下副本和引用的区别,以及如何判断它们:

副本

当你创建一个变量的副本时,你实际上是在内存中创建了一个新的对象,并将原始对象的值复制到这个新对象中。修改副本不会影响原始对象。

例如:

Python

复制代码
a = 10
b = a  # 创建副本
b += 5
print(a)  # 输出 10
print(b)  # 输出 15

.

在这个例子中,ab 是两个独立的变量,修改 b 不会影响 a

引用

当你创建一个变量的引用时,你实际上是在创建一个指向原始对象的指针。修改引用会直接影响原始对象。

例如:

Python

复制代码
a = [1, 2, 3]
b = a  # 创建引用
b.append(4)
print(a)  # 输出 [1, 2, 3, 4]
print(b)  # 输出 [1, 2, 3, 4]

在这个例子中,ab 指向同一个列表对象,修改 b 会直接影响 a

如何判断

判断一个变量是副本还是引用,主要取决于变量的类型和操作方式:

  1. 不可变对象(如整数、字符串、元组):赋值操作通常会创建副本。
  2. 可变对象(如列表、字典、集合):赋值操作通常会创建引用。

在你的代码中:

Python

复制代码
for param in params:
    param -= lr * param.grad / batch_size

paramparams 列表中的元素的引用,因此修改 param 会直接影响 params 列表中的元素。

于是可以肯定,数据类型不同,同样的语句,params会出现修改和不修改两种情况,见下图:

可见tensor类型是可以通过该语句直接修改params的值,而ndarray则不行。

相关推荐
倔强青铜三19 分钟前
苦练Python第23天:元组秘籍与妙用
人工智能·python·面试
AndrewHZ1 小时前
【图像处理基石】如何入门色彩评估?
图像处理·人工智能·深度学习·色彩科学·hvs·色彩评估·颜色工程
TomatoSCI1 小时前
聚类的可视化选择:PCA / t-SNE丨TomatoSCI分析日记
人工智能·机器学习
大咖分享课1 小时前
深度剖析:最新发布的ChatGPT Agent 技术架构与应用场景
人工智能·openai·智能助手·ai代理·chatgpt agent·自主任务执行
lucky_lyovo1 小时前
卷积神经网络--网络性能提升
人工智能·神经网络·cnn
liliangcsdn1 小时前
smolagents - 如何在mac用agents做简单算术题
人工智能·macos·prompt
nju_spy1 小时前
周志华《机器学习导论》第8章 集成学习 Ensemble Learning
人工智能·随机森林·机器学习·集成学习·boosting·bagging·南京大学
静心问道2 小时前
TrOCR: 基于Transformer的光学字符识别方法,使用预训练模型
人工智能·深度学习·transformer·多模态
说私域2 小时前
基于开源AI大模型、AI智能名片与S2B2C商城小程序源码的用户价值引导与核心用户沉淀策略研究
人工智能·开源
亲持红叶2 小时前
GLU 变种:ReGLU 、 GEGLU 、 SwiGLU
人工智能·深度学习·神经网络·激活函数