深度学习常用语句for param in params问题:为什么修改param之后,params对应元素也随之改变?

python 复制代码
def sgd(params, lr, batch_size):  #@save
    """小批量随机梯度下降"""
    with torch.no_grad():
        for param in params:
            param -= lr * param.grad / batch_size
            param.grad.zero_()

sgd([w, b], lr, batch_size)

上述代码中,param遍历params的所有元素,并进行sgd梯度下降,但是其仅仅对param进行修改,为何params元素会随之改变?

于是我进行实验,发现无论是最简单的数组还是np.array(ndarray格式),都是只修改了param而不修改params,如下图所示:

于是询问copilot:

然而为何源码中的params会改变?继续询问:

继续:

由 你 发送:

为什么一个是副本,一个是引用,两者有什么区别,如何判断

由 Copilot 发送:

这是一个很好的问题!在 Python 中,变量是如何传递的取决于它们的类型和使用方式。让我们详细解释一下副本和引用的区别,以及如何判断它们:

副本

当你创建一个变量的副本时,你实际上是在内存中创建了一个新的对象,并将原始对象的值复制到这个新对象中。修改副本不会影响原始对象。

例如:

Python

复制代码
a = 10
b = a  # 创建副本
b += 5
print(a)  # 输出 10
print(b)  # 输出 15

.

在这个例子中,ab 是两个独立的变量,修改 b 不会影响 a

引用

当你创建一个变量的引用时,你实际上是在创建一个指向原始对象的指针。修改引用会直接影响原始对象。

例如:

Python

复制代码
a = [1, 2, 3]
b = a  # 创建引用
b.append(4)
print(a)  # 输出 [1, 2, 3, 4]
print(b)  # 输出 [1, 2, 3, 4]

在这个例子中,ab 指向同一个列表对象,修改 b 会直接影响 a

如何判断

判断一个变量是副本还是引用,主要取决于变量的类型和操作方式:

  1. 不可变对象(如整数、字符串、元组):赋值操作通常会创建副本。
  2. 可变对象(如列表、字典、集合):赋值操作通常会创建引用。

在你的代码中:

Python

复制代码
for param in params:
    param -= lr * param.grad / batch_size

paramparams 列表中的元素的引用,因此修改 param 会直接影响 params 列表中的元素。

于是可以肯定,数据类型不同,同样的语句,params会出现修改和不修改两种情况,见下图:

可见tensor类型是可以通过该语句直接修改params的值,而ndarray则不行。

相关推荐
幻云20104 分钟前
Python机器学习:筑基与实践
前端·人工智能·python
ZCXZ12385296a5 分钟前
【深度学习实战】基于YOLO11-ConvNeXtV2的软垫物体检测与分类详解
人工智能·深度学习·分类
wfeqhfxz25887827 分钟前
花椒种植环境中的异物检测与分类:基于QueryInst模型的10类杂质识别
人工智能·分类·数据挖掘
人工智能AI技术12 分钟前
【Agent从入门到实践】18 脚本化编程:批量执行、自动化逻辑
人工智能·python
向量引擎18 分钟前
[硬核架构] 2026 企业级 AI 网关落地指南:从“连接超时”到“秒级响应”的架构演进(附 Python/Java 源码)
人工智能·python·gpt·ai作画·架构·aigc·api调用
Aloudata23 分钟前
数据语义层 vs 宽表模式:哪种架构更适合 AI 时代的数据分析?
人工智能·架构·数据挖掘·数据分析·数据治理
前进的李工23 分钟前
深度解析:词向量与自注意力机制
深度学习·神经网络·cnn·位置编码·自注意力
OLOLOadsd12327 分钟前
基于改进YOLOv13的长曲棍球角色识别与装备检测系统
人工智能·yolo·目标跟踪
高频交易dragon27 分钟前
An Impulse Control Approach to Market Making in a Hawkes LOB Market从论文到生产
人工智能·算法·机器学习
AI营销快线28 分钟前
原圈科技AI CRM系统打破数据孤岛,实现业绩增长的可视化闘环
大数据·人工智能