深度学习常用语句for param in params问题:为什么修改param之后,params对应元素也随之改变?

python 复制代码
def sgd(params, lr, batch_size):  #@save
    """小批量随机梯度下降"""
    with torch.no_grad():
        for param in params:
            param -= lr * param.grad / batch_size
            param.grad.zero_()

sgd([w, b], lr, batch_size)

上述代码中,param遍历params的所有元素,并进行sgd梯度下降,但是其仅仅对param进行修改,为何params元素会随之改变?

于是我进行实验,发现无论是最简单的数组还是np.array(ndarray格式),都是只修改了param而不修改params,如下图所示:

于是询问copilot:

然而为何源码中的params会改变?继续询问:

继续:

由 你 发送:

为什么一个是副本,一个是引用,两者有什么区别,如何判断

由 Copilot 发送:

这是一个很好的问题!在 Python 中,变量是如何传递的取决于它们的类型和使用方式。让我们详细解释一下副本和引用的区别,以及如何判断它们:

副本

当你创建一个变量的副本时,你实际上是在内存中创建了一个新的对象,并将原始对象的值复制到这个新对象中。修改副本不会影响原始对象。

例如:

Python

复制代码
a = 10
b = a  # 创建副本
b += 5
print(a)  # 输出 10
print(b)  # 输出 15

.

在这个例子中,ab 是两个独立的变量,修改 b 不会影响 a

引用

当你创建一个变量的引用时,你实际上是在创建一个指向原始对象的指针。修改引用会直接影响原始对象。

例如:

Python

复制代码
a = [1, 2, 3]
b = a  # 创建引用
b.append(4)
print(a)  # 输出 [1, 2, 3, 4]
print(b)  # 输出 [1, 2, 3, 4]

在这个例子中,ab 指向同一个列表对象,修改 b 会直接影响 a

如何判断

判断一个变量是副本还是引用,主要取决于变量的类型和操作方式:

  1. 不可变对象(如整数、字符串、元组):赋值操作通常会创建副本。
  2. 可变对象(如列表、字典、集合):赋值操作通常会创建引用。

在你的代码中:

Python

复制代码
for param in params:
    param -= lr * param.grad / batch_size

paramparams 列表中的元素的引用,因此修改 param 会直接影响 params 列表中的元素。

于是可以肯定,数据类型不同,同样的语句,params会出现修改和不修改两种情况,见下图:

可见tensor类型是可以通过该语句直接修改params的值,而ndarray则不行。

相关推荐
AI_gurubar1 小时前
大模型教机器人叠衣服:2025年”语言理解+多模态融合“的智能新篇
人工智能·机器人
XINVRY-FPGA2 小时前
EPM240T100I5N Altera FPGA MAX II CPLD
人工智能·嵌入式硬件·fpga开发·硬件工程·dsp开发·射频工程·fpga
HuggingFace3 小时前
开源开发者须知:欧盟《人工智能法案》对通用人工智能模型的最新要求
人工智能
Coovally AI模型快速验证4 小时前
农田扫描提速37%!基于检测置信度的无人机“智能抽查”路径规划,Coovally一键加速模型落地
深度学习·算法·yolo·计算机视觉·transformer·无人机
媒体人8884 小时前
GEO 优化专家孟庆涛:技术破壁者重构 AI 时代搜索逻辑
大数据·人工智能
小菜AI科技4 小时前
Windsurf 评测:这款 人工智能 IDE 是你需要的颠覆性工具吗?
人工智能
RaymondZhao344 小时前
【全面推导】策略梯度算法:公式、偏差方差与进化
人工智能·深度学习·算法·机器学习·chatgpt
yzx9910135 小时前
小程序开发APP
开发语言·人工智能·python·yolo
AKAMAI5 小时前
通过自动化本地计算磁盘与块存储卷加密保护数据安全
人工智能·云计算
无规则ai6 小时前
动手学深度学习(pytorch版):第四章节—多层感知机(5)权重衰减
人工智能·pytorch·python·深度学习