问题描述:对于Point[] points坐标数组(Point是坐标点,包含X与Y),请计算两两坐标点之间的距离。
思路:既然是算距离,没有别的要求,只需要最简单的曼哈顿距离就行。
测试数据:
cs
Random random = new Random();
int n = 3000;
Point[] points = new Point[n];
for (int i = 0; i < n; i++)
{
points[i] = new Point(random.Next(10), random.Next(10));
}
方法一:采用普通遍历法
cs
Stopwatch sw = Stopwatch.StartNew();
int m = (n * n - n) / 2;
List<int> list2 = new List<int>(m);
for (int i = 0; i < n; i++)
{
Point p= points[i];
for (int j = i + 1; j < n; j++)
{
Point p2 = points[j];
int dif = Math.Abs(p.X - p2.X) + Math.Abs(p.Y - p2.Y);
list2.Add(dif);
}
}
sw.Stop();
Console.WriteLine($"普通耗时:{sw.ElapsedMilliseconds}ms");
方法二:采用SIMD加速
cs
public static int[] CalculateDistance(Point[] points)
{
int n = points.Length;
int m = (n * n - n) >> 1;
int[] ints = new int[m];
int k = 0;
if (n <= 4)// 如果数据量小于等于4采用指针处理
{
fixed (Point* ptr = points)
{
for (int i = 0; i < n; i++)
{
Point* p1 = ptr + i;
for (int j = i + 1; j < n; j++)
{
Point* p2 = ptr + j;
int dif = Math.Abs(p1->X - p2->X) + Math.Abs(p1->Y - p2->Y);
ints[k++] = dif;
}
}
return ints;
}
}
int vsize = Vector128<int>.Count;
int t = 0;
int[] xs = new int[n];
int[] ys = new int[n];
fixed (Point* ptr = points)
{
fixed (int* xptr = xs, yptr = ys, rptr = ints)
{
// 分离x与y
for (int i = 0; i < n; i++)
{
Point* p = ptr + i;
*(xptr + i) = p->X;
*(yptr + i) += p->Y;
}
// 开始向量计算
for (int i = 0; i < n; i += vsize)
{
Vector128<int> vx1 = *(Vector128<int>*)(xptr + i);
Vector128<int> vy1 = *(Vector128<int>*)(yptr + i);
for (int j = i + 1; j < n; j++)
{
Vector128<int> vx2 = *(Vector128<int>*)(xptr + j);
Vector128<int> vy2 = *(Vector128<int>*)(yptr + j);
// 向量运算
var vDifference = Sse2.Add(Vector128.Abs(Sse2.Subtract(vx1, vx2)), Vector128.Abs(Sse2.Subtract(vy1, vy2)));
int* maskPtr = (int*)&vDifference;
int h = n - j;
for (int a = 0; a < vsize; a++)
{
if (a >= h) break;
*(rptr + t++) = *(maskPtr + a);
}
}
}
}
}
return ints;
}
注:根据CPU选择合适的Vector,比如Vector256、Vector512等等。本文只用Vector128.
测试结果(Release环境):
|----------|------|------|------|-------|-------|
| 数据量 | 3000 | 5000 | 7000 | 10000 | 30000 |
| 普通耗时(ms) | 43 | 127 | 211 | 538 | 3872 |
| 向量耗时(ms) | 19 | 56 | 68 | 190 | 1092 |
结论:明显向量运算性能优于普通计算。