熵权法模型(评价类问题)

一. 概念

利用信息熵计算各个指标的权重,从而为多指标的评价类问题提供依据。

指标的变异程度越小,所反映的信息量也越少,所以其对应的权值也应该越低。

指标的变异程度(或称为变异性、波动性):描述了一个指标在不同观测值之间的差异程度或分散程度。简单来说,它反映了数据的分布宽度和离散情况。

也即如果一个指标的波动性越小,说明该指标对最终结果的影响理应越小,也即其对应权值更低。

信息熵公式:

  • :表示随机变量 的熵。熵衡量了随机变量的不确定性或信息量。熵越大,随机变量的不确定性越高。
  • :随机变量 的一种取值情况。
  • :随机变量 取值为 的概率。每个 都有一个与之对应的概率
  • 的二进制对数。对数的底数为 2,因此它表示的是以比特为单位的信息量。具体来说, 衡量了事件 发生时的信息量。

由于概率 总是介于 0 和 1 之间, 会是一个负数。负号保证了整个熵的值为正数。

这个公式通过对所有可能取值的信息量加权求和,衡量了随机变量 的不确定性。熵值越大,说明随机变量 的不确定性越高。

二. 特点

熵权法是一种客观的赋权方法,它可以靠数据本身得出权重,避免了主观因素的介入。

三. 实现步骤

1. 标准化

消除量纲的影响。将所有的指标转变为0到1之间的数。

相关推荐
鼾声鼾语38 分钟前
matlab的ros2发布的消息,局域网内其他设备收不到情况吗?但是matlab可以订阅其他局域网的ros2发布的消息(问题总结)
开发语言·人工智能·深度学习·算法·matlab·isaaclab
老蒋新思维1 小时前
创客匠人视角:智能体重构创始人 IP,知识变现从 “内容售卖” 到 “能力复制” 的革命
大数据·网络·人工智能·tcp/ip·创始人ip·创客匠人·知识变现
leo__5201 小时前
基于LDA的数据降维:原理与MATLAB实现
开发语言·matlab·信息可视化
笨蛋少年派2 小时前
Flume数据采集工具简介
大数据
梦里不知身是客112 小时前
spark中如何调节Executor的堆外内存
大数据·javascript·spark
小C8063 小时前
【Starrocks + Hive 】BitMap + 物化视图 实战记录
大数据
jllllyuz3 小时前
matlab使用B样条进行曲线曲面拟合
开发语言·matlab
西格电力科技4 小时前
面向工业用户的绿电直连架构适配技术:高可靠与高弹性的双重设计
大数据·服务器·人工智能·架构·能源
beijingliushao6 小时前
105-Spark之Standalone HA环境搭建过程
大数据·spark