熵权法模型(评价类问题)

一. 概念

利用信息熵计算各个指标的权重,从而为多指标的评价类问题提供依据。

指标的变异程度越小,所反映的信息量也越少,所以其对应的权值也应该越低。

指标的变异程度(或称为变异性、波动性):描述了一个指标在不同观测值之间的差异程度或分散程度。简单来说,它反映了数据的分布宽度和离散情况。

也即如果一个指标的波动性越小,说明该指标对最终结果的影响理应越小,也即其对应权值更低。

信息熵公式:

  • :表示随机变量 的熵。熵衡量了随机变量的不确定性或信息量。熵越大,随机变量的不确定性越高。
  • :随机变量 的一种取值情况。
  • :随机变量 取值为 的概率。每个 都有一个与之对应的概率
  • 的二进制对数。对数的底数为 2,因此它表示的是以比特为单位的信息量。具体来说, 衡量了事件 发生时的信息量。

由于概率 总是介于 0 和 1 之间, 会是一个负数。负号保证了整个熵的值为正数。

这个公式通过对所有可能取值的信息量加权求和,衡量了随机变量 的不确定性。熵值越大,说明随机变量 的不确定性越高。

二. 特点

熵权法是一种客观的赋权方法,它可以靠数据本身得出权重,避免了主观因素的介入。

三. 实现步骤

1. 标准化

消除量纲的影响。将所有的指标转变为0到1之间的数。

相关推荐
virtual_k1smet4 小时前
梧桐·鸿鹄- 大数据assistant-level
大数据·笔记
ggabb4 小时前
海南封关:锚定中国制造2025,破解产业转移生死局
大数据·人工智能
aigcapi7 小时前
[深度观察] RAG 架构重塑流量分发:2025 年 GEO 优化技术路径与头部服务商选型指南
大数据·人工智能·架构
山峰哥8 小时前
SQL调优核心战法——索引失效场景与Explain深度解析
大数据·汇编·数据库·sql·编辑器·深度优先
hqyjzsb10 小时前
从爱好到专业:AI初学者如何跨越CAIE认证的理想与现实鸿沟
大数据·c语言·人工智能·信息可视化·职场和发展·excel·业界资讯
袋鼠云数栈10 小时前
企业数据资产管理核心框架:L1-L5分层架构解析
大数据·人工智能·架构
zxsz_com_cn10 小时前
设备预测性维护怎么做?预测性维护案例详解
大数据·人工智能
G皮T11 小时前
【Elasticsearch】查询性能调优(四):计数的精确性探讨
大数据·elasticsearch·搜索引擎·全文检索·es·性能·opensearch
十月南城11 小时前
ES性能与可用性——分片、副本、路由与聚合的调度逻辑与成本
大数据·elasticsearch·搜索引擎
Dargon28811 小时前
Simulink的SIL软件在环测试
开发语言·matlab·simulink·mbd软件开发