熵权法模型(评价类问题)

一. 概念

利用信息熵计算各个指标的权重,从而为多指标的评价类问题提供依据。

指标的变异程度越小,所反映的信息量也越少,所以其对应的权值也应该越低。

指标的变异程度(或称为变异性、波动性):描述了一个指标在不同观测值之间的差异程度或分散程度。简单来说,它反映了数据的分布宽度和离散情况。

也即如果一个指标的波动性越小,说明该指标对最终结果的影响理应越小,也即其对应权值更低。

信息熵公式:

  • :表示随机变量 的熵。熵衡量了随机变量的不确定性或信息量。熵越大,随机变量的不确定性越高。
  • :随机变量 的一种取值情况。
  • :随机变量 取值为 的概率。每个 都有一个与之对应的概率
  • 的二进制对数。对数的底数为 2,因此它表示的是以比特为单位的信息量。具体来说, 衡量了事件 发生时的信息量。

由于概率 总是介于 0 和 1 之间, 会是一个负数。负号保证了整个熵的值为正数。

这个公式通过对所有可能取值的信息量加权求和,衡量了随机变量 的不确定性。熵值越大,说明随机变量 的不确定性越高。

二. 特点

熵权法是一种客观的赋权方法,它可以靠数据本身得出权重,避免了主观因素的介入。

三. 实现步骤

1. 标准化

消除量纲的影响。将所有的指标转变为0到1之间的数。

相关推荐
随心............13 分钟前
yarn面试题
大数据·hive·spark
hdsoft_huge23 分钟前
第六章 Kettle(PDI)解锁脚本组件:数据处理的可编程利器
java·大数据·etl
最好束手就擒2 小时前
Elasticsearch批量写入50万数据
大数据·elasticsearch·jenkins
在未来等你2 小时前
Elasticsearch面试精讲 Day 25:Elasticsearch SQL与数据分析
大数据·分布式·elasticsearch·搜索引擎·面试
wearegogog1232 小时前
负荷聚类及其在MATLAB中的实现
matlab·php·聚类
拓端研究室3 小时前
专题:2025年医疗健康行业状况报告:投融资、脑机接口、AI担忧|附130+份报告PDF合集、图表下载
大数据·人工智能
ZHOU_WUYI3 小时前
Apache Spark 集群部署与使用指南
大数据·spark·apache
爱看科技3 小时前
科技新突破!微美全息(NASDAQ:WIMI)研发保留运动想象脑机接口“方差密钥”技术
大数据·人工智能·科技
中科岩创3 小时前
青海某公路水渠自动化监测服务项目
大数据·人工智能·物联网
武子康3 小时前
大数据-131 Flink CEP 实战 24 小时≥5 次交易 & 10 分钟未支付检测 案例附代码
大数据·后端·flink