熵权法模型(评价类问题)

一. 概念

利用信息熵计算各个指标的权重,从而为多指标的评价类问题提供依据。

指标的变异程度越小,所反映的信息量也越少,所以其对应的权值也应该越低。

指标的变异程度(或称为变异性、波动性):描述了一个指标在不同观测值之间的差异程度或分散程度。简单来说,它反映了数据的分布宽度和离散情况。

也即如果一个指标的波动性越小,说明该指标对最终结果的影响理应越小,也即其对应权值更低。

信息熵公式:

  • :表示随机变量 的熵。熵衡量了随机变量的不确定性或信息量。熵越大,随机变量的不确定性越高。
  • :随机变量 的一种取值情况。
  • :随机变量 取值为 的概率。每个 都有一个与之对应的概率
  • 的二进制对数。对数的底数为 2,因此它表示的是以比特为单位的信息量。具体来说, 衡量了事件 发生时的信息量。

由于概率 总是介于 0 和 1 之间, 会是一个负数。负号保证了整个熵的值为正数。

这个公式通过对所有可能取值的信息量加权求和,衡量了随机变量 的不确定性。熵值越大,说明随机变量 的不确定性越高。

二. 特点

熵权法是一种客观的赋权方法,它可以靠数据本身得出权重,避免了主观因素的介入。

三. 实现步骤

1. 标准化

消除量纲的影响。将所有的指标转变为0到1之间的数。

相关推荐
亭台16 分钟前
【Matlab笔记_23】MATLAB的工具包m_map的m_image和m_pcolor区别
笔记·算法·matlab
一缕猫毛40 分钟前
Flink demo代码
java·大数据·flink
Hello.Reader42 分钟前
Flink ML 基本概念Table API、Stage、Pipeline 与 Graph
大数据·python·flink
pale_moonlight1 小时前
十一、Flink基础环境实战
大数据·flink
beijingliushao1 小时前
103-Spark之Standalone环境测试
大数据·ajax·spark
西格电力科技1 小时前
光伏四可“可观”功能:光伏电站全景数字化的底层支撑技术
大数据·人工智能·架构·能源
TDengine (老段)1 小时前
从关系型数据库到时序数据库的思维转变
大数据·数据库·mysql·时序数据库·tdengine·涛思数据·非关系型数据库
木风小助理1 小时前
Flink CDC:构建实时数据入湖架构的核心引擎
大数据·架构·flink
管理大亨2 小时前
ELK + Redis Docker 企业级部署落地方案
大数据·运维·elk·elasticsearch·docker·jenkins
星川皆无恙2 小时前
基于知识图谱+深度学习的大数据NLP医疗知识问答可视化系统(全网最详细讲解及源码/建议收藏)
大数据·人工智能·python·深度学习·自然语言处理·知识图谱