熵权法模型(评价类问题)

一. 概念

利用信息熵计算各个指标的权重,从而为多指标的评价类问题提供依据。

指标的变异程度越小,所反映的信息量也越少,所以其对应的权值也应该越低。

指标的变异程度(或称为变异性、波动性):描述了一个指标在不同观测值之间的差异程度或分散程度。简单来说,它反映了数据的分布宽度和离散情况。

也即如果一个指标的波动性越小,说明该指标对最终结果的影响理应越小,也即其对应权值更低。

信息熵公式:

  • :表示随机变量 的熵。熵衡量了随机变量的不确定性或信息量。熵越大,随机变量的不确定性越高。
  • :随机变量 的一种取值情况。
  • :随机变量 取值为 的概率。每个 都有一个与之对应的概率
  • 的二进制对数。对数的底数为 2,因此它表示的是以比特为单位的信息量。具体来说, 衡量了事件 发生时的信息量。

由于概率 总是介于 0 和 1 之间, 会是一个负数。负号保证了整个熵的值为正数。

这个公式通过对所有可能取值的信息量加权求和,衡量了随机变量 的不确定性。熵值越大,说明随机变量 的不确定性越高。

二. 特点

熵权法是一种客观的赋权方法,它可以靠数据本身得出权重,避免了主观因素的介入。

三. 实现步骤

1. 标准化

消除量纲的影响。将所有的指标转变为0到1之间的数。

相关推荐
智算菩萨8 小时前
高效多模态大语言模型:从统一框架到训练与推理效率的系统化理论梳理
大数据·人工智能·多模态
hzp6668 小时前
新兴存储全景与未来架构走向
大数据·大模型·llm·aigc·数据存储
INFINI Labs9 小时前
Easy-Es 2.1.0-easysearch 版本发布
大数据·elasticsearch·搜索引擎·easysearch·easy-es
小北方城市网9 小时前
第 6 课:Vue 3 工程化与项目部署实战 —— 从本地开发到线上发布
大数据·运维·前端·ai
落叶,听雪10 小时前
AI建站推荐
大数据·人工智能·python
lhrimperial10 小时前
Elasticsearch核心技术深度解析
大数据·elasticsearch·搜索引擎
geneculture10 小时前
从智力仿真到认知协同:人机之间的价值对齐与共生框架
大数据·人工智能·学习·融智学的重要应用·信智序位
无代码专家11 小时前
设备巡检数字化闭环解决方案:从预防到优化的全流程赋能
大数据·人工智能
神算大模型APi--天枢64612 小时前
合规与高效兼得:国产全栈架构赋能行业大模型定制,从教育到工业的轻量化落地
大数据·前端·人工智能·架构·硬件架构
飞飞传输14 小时前
守护医疗隐私,数据安全摆渡系统撑起内外网安全伞!
大数据·运维·安全