熵权法模型(评价类问题)

一. 概念

利用信息熵计算各个指标的权重,从而为多指标的评价类问题提供依据。

指标的变异程度越小,所反映的信息量也越少,所以其对应的权值也应该越低。

指标的变异程度(或称为变异性、波动性):描述了一个指标在不同观测值之间的差异程度或分散程度。简单来说,它反映了数据的分布宽度和离散情况。

也即如果一个指标的波动性越小,说明该指标对最终结果的影响理应越小,也即其对应权值更低。

信息熵公式:

  • :表示随机变量 的熵。熵衡量了随机变量的不确定性或信息量。熵越大,随机变量的不确定性越高。
  • :随机变量 的一种取值情况。
  • :随机变量 取值为 的概率。每个 都有一个与之对应的概率
  • 的二进制对数。对数的底数为 2,因此它表示的是以比特为单位的信息量。具体来说, 衡量了事件 发生时的信息量。

由于概率 总是介于 0 和 1 之间, 会是一个负数。负号保证了整个熵的值为正数。

这个公式通过对所有可能取值的信息量加权求和,衡量了随机变量 的不确定性。熵值越大,说明随机变量 的不确定性越高。

二. 特点

熵权法是一种客观的赋权方法,它可以靠数据本身得出权重,避免了主观因素的介入。

三. 实现步骤

1. 标准化

消除量纲的影响。将所有的指标转变为0到1之间的数。

相关推荐
DavidSoCool16 分钟前
es 3期 第25节-运用Rollup减少数据存储
大数据·elasticsearch·搜索引擎
Elastic 中国社区官方博客20 分钟前
使用 Elasticsearch 导航检索增强生成图表
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
Ray.199835 分钟前
Flink在流处理中,为什么还会有窗口的概念呢
大数据·flink
抛砖者35 分钟前
3.Flink中重要API的使用
大数据·flink
金州饿霸39 分钟前
Flink运行时架构
大数据·flink
金州饿霸40 分钟前
Flink中的时间和窗口
大数据·flink
chen4930722 小时前
matlab实现数据极坐标显示
matlab
watersink2 小时前
面试题库笔记
大数据·人工智能·机器学习
数字化综合解决方案提供商2 小时前
【Rate Limiting Advanced插件】赋能AI资源高效分配
大数据·人工智能
Elastic 中国社区官方博客3 小时前
设计新的 Kibana 仪表板布局以支持可折叠部分等
大数据·数据库·elasticsearch·搜索引擎·信息可视化·全文检索·kibana