熵权法模型(评价类问题)

一. 概念

利用信息熵计算各个指标的权重,从而为多指标的评价类问题提供依据。

指标的变异程度越小,所反映的信息量也越少,所以其对应的权值也应该越低。

指标的变异程度(或称为变异性、波动性):描述了一个指标在不同观测值之间的差异程度或分散程度。简单来说,它反映了数据的分布宽度和离散情况。

也即如果一个指标的波动性越小,说明该指标对最终结果的影响理应越小,也即其对应权值更低。

信息熵公式:

  • :表示随机变量 的熵。熵衡量了随机变量的不确定性或信息量。熵越大,随机变量的不确定性越高。
  • :随机变量 的一种取值情况。
  • :随机变量 取值为 的概率。每个 都有一个与之对应的概率
  • 的二进制对数。对数的底数为 2,因此它表示的是以比特为单位的信息量。具体来说, 衡量了事件 发生时的信息量。

由于概率 总是介于 0 和 1 之间, 会是一个负数。负号保证了整个熵的值为正数。

这个公式通过对所有可能取值的信息量加权求和,衡量了随机变量 的不确定性。熵值越大,说明随机变量 的不确定性越高。

二. 特点

熵权法是一种客观的赋权方法,它可以靠数据本身得出权重,避免了主观因素的介入。

三. 实现步骤

1. 标准化

消除量纲的影响。将所有的指标转变为0到1之间的数。

相关推荐
TDengine (老段)32 分钟前
TDengine 支持的平台汇总
大数据·数据库·物联网·时序数据库·iot·tdengine·涛思数据
火龙谷34 分钟前
【hadoop】相关集群开启命令
大数据·hadoop·分布式
livemetee3 小时前
一个完整的日志收集方案:Elasticsearch + Logstash + Kibana+Filebeat (二)
大数据·elk·搜索引擎
TDengine (老段)3 小时前
TDengine 开发指南——无模式写入
大数据·数据库·物联网·时序数据库·iot·tdengine·涛思数据
TDengine (老段)3 小时前
TDengine 在电力行业如何使用 AI ?
大数据·数据库·人工智能·时序数据库·tdengine·涛思数据
盛寒5 小时前
自然语言处理 目录篇
大数据·自然语言处理
武子康5 小时前
大数据-276 Spark MLib - 基础介绍 机器学习算法 Bagging和Boosting区别 GBDT梯度提升树
大数据·人工智能·算法·机器学习·语言模型·spark-ml·boosting
武子康5 小时前
大数据-277 Spark MLib - 基础介绍 机器学习算法 Gradient Boosting GBDT算法原理 高效实现
大数据·人工智能·算法·机器学习·ai·spark-ml·boosting
咸鱼求放生13 小时前
es在Linux安装
大数据·elasticsearch·搜索引擎
人大博士的交易之路15 小时前
今日行情明日机会——20250606
大数据·数学建模·数据挖掘·数据分析·涨停回马枪