讲解机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类算法是一种常用的无监督学习算法,用于将数据点分组成具有相似特征的类别。它的基本思想是将数据点分为K个簇,使得每个数据点与同一簇内的其他数据点距离最小。

算法的步骤如下:

  1. 随机选择K个数据点作为初始的聚类中心。
  2. 对于每个数据点,计算其与K个聚类中心的距离,并将数据点分配到距离最近的聚类中心所在的簇。
  3. 更新每个聚类的中心点,即计算每个簇内所有数据点的平均值,将其作为新的聚类中心。
  4. 重复第2和第3步,直到聚类中心不再发生变化或达到预设的迭代次数。

K-均值聚类算法的优点包括:

  1. 简单易实现:算法的思想简单,并且容易理解和实施。
  2. 可扩展性强:算法在大规模数据集上也能够很好地工作。
  3. 可解释性高:聚类结果可视化,便于理解数据的结构和模式。

然而,K-均值聚类算法也有一些缺点:

  1. 需要预先指定聚类个数K:在实际应用中,很难事先确定合适的K值,这可能导致聚类结果不佳。
  2. 对初始聚类中心敏感:K-均值聚类算法对初始聚类中心的选择非常敏感,不同的初始值可能导致不同的聚类结果。
  3. 对异常值敏感:算法对异常值非常敏感,异常值的存在可能导致聚类结果的不准确性。

为了解决上述缺点,还有一些改进的K-均值算法,如谱聚类、密度聚类等。

相关推荐
木子.李3475 小时前
排序算法总结(C++)
c++·算法·排序算法
闪电麦坤956 小时前
数据结构:递归的种类(Types of Recursion)
数据结构·算法
Gyoku Mint6 小时前
机器学习×第二卷:概念下篇——她不再只是模仿,而是开始决定怎么靠近你
人工智能·python·算法·机器学习·pandas·ai编程·matplotlib
纪元A梦7 小时前
分布式拜占庭容错算法——PBFT算法深度解析
java·分布式·算法
px不是xp7 小时前
山东大学算法设计与分析复习笔记
笔记·算法·贪心算法·动态规划·图搜索算法
猛犸MAMMOTH8 小时前
Python打卡第46天
开发语言·python·机器学习
枫景Maple8 小时前
LeetCode 2297. 跳跃游戏 VIII(中等)
算法·leetcode
鑫鑫向栄8 小时前
[蓝桥杯]修改数组
数据结构·c++·算法·蓝桥杯·动态规划
鑫鑫向栄8 小时前
[蓝桥杯]带分数
数据结构·c++·算法·职场和发展·蓝桥杯