讲解机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类算法是一种常用的无监督学习算法,用于将数据点分组成具有相似特征的类别。它的基本思想是将数据点分为K个簇,使得每个数据点与同一簇内的其他数据点距离最小。

算法的步骤如下:

  1. 随机选择K个数据点作为初始的聚类中心。
  2. 对于每个数据点,计算其与K个聚类中心的距离,并将数据点分配到距离最近的聚类中心所在的簇。
  3. 更新每个聚类的中心点,即计算每个簇内所有数据点的平均值,将其作为新的聚类中心。
  4. 重复第2和第3步,直到聚类中心不再发生变化或达到预设的迭代次数。

K-均值聚类算法的优点包括:

  1. 简单易实现:算法的思想简单,并且容易理解和实施。
  2. 可扩展性强:算法在大规模数据集上也能够很好地工作。
  3. 可解释性高:聚类结果可视化,便于理解数据的结构和模式。

然而,K-均值聚类算法也有一些缺点:

  1. 需要预先指定聚类个数K:在实际应用中,很难事先确定合适的K值,这可能导致聚类结果不佳。
  2. 对初始聚类中心敏感:K-均值聚类算法对初始聚类中心的选择非常敏感,不同的初始值可能导致不同的聚类结果。
  3. 对异常值敏感:算法对异常值非常敏感,异常值的存在可能导致聚类结果的不准确性。

为了解决上述缺点,还有一些改进的K-均值算法,如谱聚类、密度聚类等。

相关推荐
弥彦_11 分钟前
cf1925B&C
数据结构·算法
星座52814 分钟前
基于现代R语言【Tidyverse、Tidymodel】的机器学习方法与案例分析
机器学习·r语言·tidyverse·tidymodel
YuTaoShao32 分钟前
【LeetCode 热题 100】994. 腐烂的橘子——BFS
java·linux·算法·leetcode·宽度优先
石迹耿千秋6 小时前
迁移学习--基于torchvision中VGG16模型的实战
人工智能·pytorch·机器学习·迁移学习
Wendy14418 小时前
【线性回归(最小二乘法MSE)】——机器学习
算法·机器学习·线性回归
拾光拾趣录8 小时前
括号生成算法
前端·算法
渣呵9 小时前
求不重叠区间总和最大值
算法
拾光拾趣录9 小时前
链表合并:双指针与递归
前端·javascript·算法
好易学·数据结构9 小时前
可视化图解算法56:岛屿数量
数据结构·算法·leetcode·力扣·回溯·牛客网
香蕉可乐荷包蛋10 小时前
AI算法之图像识别与分类
人工智能·学习·算法