云计算任务调度优化matlab仿真,对比蚁群优化和蛙跳优化

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

[4.1 ACO蚁群优化](#4.1 ACO蚁群优化)

[4.2 蛙跳优化](#4.2 蛙跳优化)

5.完整程序


1.程序功能描述

云计算任务调度优化,优化目标位任务消耗时间,调度后的经济效益以及设备功耗,对比蚁群优化算法和蛙跳优化算法。

2.测试软件版本以及运行结果展示

MATLAB2022A版本运行

(完整程序运行后无水印)

3.核心程序

复制代码
........................................................................
    for t = 1:Iters 
        [N,t]
        lamda=1/t^2; 
        %学习 
        [Tau_Best(t),BestIndex]=max(Tau);
        %计算状态转移概率
        for i=1:Num 
            Ps(i)=(Tau(BestIndex)-Tau(i))/Tau(BestIndex);  
        end 

        for i=1:Num 
            rng(i);
            if Ps(i)<P0  %局部搜索 
                temp1=x(i,:)+100*randn(1,Ant)*lamda;       
            else  %全局搜索 
                temp1=x(i,:)+100*randn(1,Ant); 
            end 
            [pa(i),pa1(i),pa2(i),finishtimea,finishcosta,pa3(i)] = fitness(temp1);
            [pb(i),pb1(i),pb2(i),finishtimeb,finishcostb,pb3(i)] = fitness(x(i,:));

            %%% 
            if pa(i)<pb(i)  %判断蚂蚁是否移动 
                x(i,:)=temp1; 
            end 
        end 
        for i=1:Num 
            [pb(i),pb1(i),pb2(i),finishtimeb,finishcostb,pb3(i)] = fitness(x(i,:));
            Tau(i)=(1-Rou)*Tau(i)+pb(i);  %更新信息量 
        end 

        Pbest1(t) = finishtimea;
        Pbest2(t) = finishcosta;
        Pbest3(t) = pa3(i);
        fobj(t)   = pa(i);
    end

    if N == 100
       save mat\R1_100.mat Pbest1 Pbest2 Pbest3
    end
    if N == 200
       save mat\R1_200.mat Pbest1 Pbest2 Pbest3
    end
    if N == 300
       save mat\R1_300.mat Pbest1 Pbest2 Pbest3
    end
    if N == 400
       save mat\R1_400.mat Pbest1 Pbest2 Pbest3
    end
    if N == 500
       save mat\R1_500.mat Pbest1 Pbest2 Pbest3
    end
    if N == 600
       save mat\R1_600.mat Pbest1 Pbest2 Pbest3
    end
end
06_057m

4.本算法原理

在云计算环境中,我们需要分配一系列的任务到一组服务器上执行。设任务集合为T={T1​,T2​,...,Tn​},服务器集合为S={S1​,S2​,...,Sm​}。每个任务Ti​都有一个处理时间ti​和一个能耗ei​。服务器Sj​有处理能力cj​和能耗率rj​。

目标函数如下:

4.1 ACO蚁群优化

蚁群优化算法模拟了蚂蚁寻找食物的行为。每只蚂蚁在寻找路径时会释放一种称为信息素的化学物质,这种物质可以引导其他蚂蚁沿着相同的路径移动。在云计算任务调度中,我们可以将蚂蚁视为解决方案的搜索者,将路径视为任务到服务器的分配方案。

4.2 蛙跳优化

蛙跳优化算法是基于青蛙跳跃行为的一种群体智能算法。在SFLA中,青蛙被视为搜索者,它们在解空间中跳跃以寻找最佳解决方案。

蚁群优化算法和蛙跳优化算法都可以有效解决云计算任务调度问题。ACO通过模拟蚂蚁的路径选择行为来优化任务分配,而SFLA则利用青蛙的跳跃行为进行搜索。这两种算法各有优势,例如ACO在处理大规模问题时可能会更快收敛,而SFLA则可能具有更好的探索能力。

5.完整程序

VVV

相关推荐
夕阳与风馨17 分钟前
三分钟搞懂云计算三大模型:SaaS、PaaS、IaaS 是怎么在业务中“各司其职”的?
后端·云计算
weixin_307779135 小时前
AWS Lambda解压缩S3 ZIP文件流程
python·算法·云计算·aws
运维行者_19 小时前
使用Applications Manager进行 Apache Solr 监控
运维·网络·数据库·网络安全·云计算·apache·solr
壹Y.1 天前
MATLAB 绘图速查笔记
笔记·matlab
Evand J2 天前
【MATLAB例程】滑动窗口均值滤波、中值滤波、最小值/最大值滤波对比。附代码下载链接
开发语言·matlab·均值算法
Britz_Kevin2 天前
从零开始的云计算生活——激流勇进,kubernetes模块之Pod资源对象
kubernetes·云计算·生活·#pod
阿湯哥3 天前
Cloud Computing(云计算)和Sky Computing(天空计算)
云计算
一株月见草哇3 天前
Matlab(4)
人工智能·算法·matlab
数据智能老司机3 天前
基于 Kubernetes 的平台工程——Kubernetes 上的平台化浪潮
kubernetes·云计算·devops
2401_823868223 天前
织构表面MATLAB仿真
人工智能·机器学习·matlab·信号处理