论文阅读《Geometric deep learning of RNA structure》

引入了机器学习方法,通过少量的数据学习。只使用原子坐标作为输入。
预测RNA三维结构比预测蛋白质结构更困难。
设计了一个原子旋转等变评分器ARES,由每个原子的三维坐标和化学元素类型(输入) 指定,ARES预测模型与未知真实结构的均根方差 RMSD。ARES是一个深度神经网络,直接从3D原子结构中学习,本质上适用于任何分子。
ARES的初始层收集局部信息,而其余层收集所有原子之间的信息。这种组合允许ARES预测全局属性,同时捕获局部结构主题和原子间相互作用的细节。
过程:
训练:ARES将每个原子的元素类型和三维坐标指定的结构模型作为输入。原子特征根据附近原子的特征反复更新。这个过程产生了一组编码每个原子环境的特征。然后将每个特征在所有原子上取平均值,并将所得平均值输入到额外的神经网络层中,这些神经网络层根据RNA分子的真实结构输出结构模型的预测RMSD,更新参数。
测试:使用Rosetta FARFAR2采样方法从候选的结构中生成了每个RNA的1000个结构模型,根据ARES的评分选择最好的模型。
局限性:
它依赖于先前开发的采样方法来生成候选结构模型。未来的工作可能会使用ARES来指导。

相关推荐
顾林海4 小时前
DeepSeek 技术原理详解
深度学习·llm·deepseek
Blossom.11810 小时前
基于深度学习的智能图像增强技术:原理、实现与应用
人工智能·python·深度学习·神经网络·机器学习·tensorflow·sklearn
nice-wyh11 小时前
三维重建之colmap+openmvs
人工智能·深度学习·3d
CoovallyAIHub11 小时前
云南电网实战:YOLOv8m改进模型攻克输电线路异物检测难题技术详解
深度学习·算法·计算机视觉
Leo Chaw11 小时前
27 - ASPP模块
深度学习·神经网络·cnn
神经星星1 天前
从石英到铁电材料,哈佛大学提出等变机器学习框架,加速材料大规模电场模拟
人工智能·深度学习·机器学习
KENYCHEN奉孝1 天前
PyTorch 实现 MNIST 手写数字识别
人工智能·pytorch·深度学习
青椒大仙KI111 天前
论文笔记 <交通灯> <多智能体>DERLight双重经验回放灯机制
论文阅读·人工智能·深度学习
苏苏susuus1 天前
深度学习:PyTorch自动微分模块
人工智能·pytorch·深度学习
kyle~1 天前
深度学习---ONNX(Open Neural Network Exchange)
人工智能·深度学习